No Image

Статические оперативные запоминающие устройства

СОДЕРЖАНИЕ
457 просмотров
10 марта 2020

В радиоаппаратуре часто требуется хранение временной информации, значение которой не важно при включении устройства. Такую память можно было бы построить на микросхемах EEPROM или FLASH -памяти, но, к сожалению, эти микросхемы дороги, обладают малым количеством перезаписей и чрезвычайно низким быстродействием при считывании и особенно записи информации. Для хранения временной информации можно воспользоваться параллельными регистрами. Так как запоминаемые слова не нужны одновременно, то можно воспользоваться механизмом адресации, который применяется в ПЗУ.

Схемы, в которых в качестве запоминающей ячейки используется параллельный регистр называются статическим оперативным запоминающим устройством – статическим ОЗУ (RAM – random access memory – память с произвольным доступом), т.к. информация в нем сохраняется все время, пока к микросхеме ОЗУ подключено питание. В отличие от статической ОЗУ в микросхемах динамического ОЗУ постоянно требуется регенерировать их содержимое, иначе информация будет испорчена.

В микросхемах ОЗУ присутствуют две операции: операция записи и операция чтения. Для записи и чтения информации можно использовать различные шины данных (как это делается в сигнальных процессорах), но чаще используется одна и та же шина данных. Это позволяет экономить внешние выводы микросхем, подключаемых к этой шине и легко осуществлять коммутацию сигналов между различными устройствами.

Структурная схема статического ОЗУ приведена на рисунке 1. Вход и выход ОЗУ в этой схеме объединены при помощи шинного формирователя. Естественно, что схемы реальных ОЗУ будутотличаться от приведенной на этом рисунке. Тем не менее, приведенная схема позволяет понять как работает реальное ОЗУ. Условно-графическое обозначение ОЗУ на принципиальных схемах приведено на рисунке 2.


Рисунок 1. Структурная схема ОЗУ (RAM)

Рисунок 2. Условно-графическое обозначение ОЗУ (RAM)

Сигнал записи WR позволяет записать логические уровни, присутствующие на информационных входах во внутреннюю ячейку ОЗУ (RAM). Сигнал чтения RD позволяет выдать содержимое внутренней ячейки памяти на информационные выходы микросхемы. В приведенной на рисунке 1 схеме невозможно одновременно производить операцию записи и чтения, но обычно это и не нужно.

Конкретная ячейка ОЗУ выбирается при помощи двоичного кода – адреса ячейки. Объем памяти ОЗУ (RAM) зависит от количества ячеек, содержащихся в ней или, что то же самое, от количества адресных проводов. Количество ячеек в ОЗУ можно определить по количеству адресных проводов, возводя 2 в степень, равную количеству адресных выводов в микросхеме:

Вывод выбора кристалла CS микросхем ОЗУ позволяет объединять несколько микросхем для увеличения объема памяти ОЗУ. Такая схема приведена на рисунке 3.


Рисунок 3. Схема ОЗУ, построенного на нескольких микросхемах памяти

Статические ОЗУ требуют для своего построения большой площади кристалла, поэтому их ёмкость относительно невелика. Статические ОЗУ применяются для построения микроконтроллерных схем из-за простоты построения принципиальной схемы и возможности работать на сколь угодно низких частотах, вплоть до постоянного тока. Кроме того статические ОЗУ применяются для построения КЭШ-памяти в универсальных компьютерах из-за высокого быстродействия статического ОЗУ.

Временные диаграммы чтения из статического ОЗУ совпадают с временными диаграммами чтения из ПЗУ. Временные диаграммы записи в статическое ОЗУ и чтения из него приведены на рисунке 4.

Читайте также:  Технические характеристики данного компьютера


Рисунок 4. Временная диаграмма обращения к ОЗУ принятая для схем, совместимых со стандартом фирмы INTEL

На рисунке 4 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы ОЗУ. На этом рисунке RD – это сигнал чтения; WR – сигнал записи; A – сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние); DI – входная информация, предназначенная для записи в ячейку ОЗУ, расположенную по адресу A1; DO – выходная информация, считанная из ячейки ОЗУ, расположенной по адресу A2.


Рисунок 5. Временная диаграмма обращения к ОЗУ принятая для схем, совместимых со стандартом фирмы MOTOROLA

На рисунке 5 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы. На этом рисунке R/W – это сигнал выбора операции записи или чтения; DS – сигнал стробирования данных; A – сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние); DI – входная информация, предназначенная для записи в ячейку ОЗУ, расположенную по адресу A1; DO – выходная информация, считанная из ячейки ОЗУ, расположенной по адресу A2.

  1. Микушин А.В. Занимательно о микроконтроллерах. СПб, БХВ-Петербург, 2006.
  2. Микушин А.В., Сажнев А.М., Сединин В.И. Цифровые устройства и микропроцессоры. СПб, БХВ-Петербург, 2010.
  3. С.А. Майоров, В.В. Кириллов, А.А. Приблуда Введение в микро ЭВМ. Ленинград, Машиностроение, 1988.
  4. Михаил Гук Аппаратные средства IBM PC. СПб, Питер, 2006.

Вместе со статьей "Статические оперативные запоминающие устройства – ОЗУ (RAM)" читают:

Большинство из применяемых в настоящее время типов микросхем оперативной памяти не в состоянии сохранять данные без внешнего источника энергии, т.е. являются энергозависимыми (volatile memory). Широкое распространение таких устройств связано с рядом их достоинств по сравнению с энергонезависимыми типами ОЗУ (non-volatile memory): большей емкостью, низким энергопотреблением, более высоким быстродействием и невысокой себестоимостью хранения единицы информации.

Энергозависимые ОЗУ можно подразделить на две основные подгруппы: динамическую память (DRAM — Dynamic Random Access Memory) и статическую память (SRAM — Static Random Access Memory).

Статическая и динамическая оперативная память

В статических ОЗУ запоминающий элемент может хранить записанную информацию неограниченно долго (при наличии питающего напряжения). Запоминающий элемент динамического ОЗУ способен хранить информацию только в течение достаточно короткого промежутка времени, после которого информацию нужно восстанавливать заново, иначе она будет потеряна. Динамические ЗУ, как и статические, энергозависимы.

Роль запоминающего элемента в статическом ОЗУ исполняет триггер. Такой триггер представляет собой схему с двумя устойчивыми состояниями, обычно состоящую из четырех или шести транзисторов (рис. 5.7). Схема с четырьмя транзисторами обеспечивает большую емкость микросхемы, а следовательно, меньшую стоимость, однако у такой схемы большой ток утечки, когда информация просто хранится. Также триггер на четырех транзисторах более чувствителен к воздействию внешних источников излучения, которые могут стать причиной потери информации. Наличие двух дополнительных транзисторов позволяет в какой-то мере компенсировать упомянутые недостатки схемы на четырех транзисторах, но, главное — увеличить быстродействие памяти.

Читайте также:  Узнать имя держателя карты по номеру

Рис. 5.7. Запоминающий элемент статического ОЗУ

Запоминающий элемент динамической памяти значительно проще. Он состоит из одного конденсатора и запирающего транзистора (рис. 5.8).

Рис. 5.8. Запоминающий элемент динамического ОЗУ

Наличие или отсутствие заряда в конденсаторе интерпретируются как 1 или 0 соответственно. Простота схемы позволяет достичь высокой плотности размещения ЗЭ и, в итоге, снизить стоимость. Главный недостаток подобной технологии связан с тем, что накапливаемый на конденсаторе заряд со временем теряется. Даже при хорошем диэлектрике с электрическим сопротивлением в несколько тераом (10 12 Ом) используемом при изготовлении элементарных конденсаторов ЗЭ, заряд теряется достаточно быстро. Размеры у такого конденсатора микроскопические, а емкость имеет порядок 1СГ 15 Ф. При такой емкости на одном конденсаторе накапливается всего около 40 000 электронов. Среднее время утечки заряда ЗЭ динамической памяти составляет сотни или даже десятки миллисекунд, поэтому заряд необходимо успеть восстановить в течение данного отрезка времени, иначе хранящаяся информация будет утеряна. Периодическое восстановление заряда ЗЭ называется регенерацией и осуществляется каждые 2-8 мс,

В различных типах ИМС динамической памяти нашли применение три основных метода регенерации:

– одним сигналом RAS (ROR — RAS Only Refresh);

– сигналом CAS, предваряющим сигнал RAS (CBR — CAS Before RAS);

– автоматическая регенерация (SR — Self Refresh).

Регенерация одним RAS использовалась еще в первых микросхемах DRAM. На шину адреса выдается адрес регенерируемой строки, сопровождаемый сигналом RAS. При этом выбирается строка ячеек и хранящиеся там данные поступают на внутренние цепи микросхемы, после чего записываются обратно. Так как сигнал CAS не появляется, цикл чтения/записи не начинается. В следующий раз на шину адреса подается адрес следующей строки и т. д., пока не восстановятся все ячейки, после чего цикл повторяется. К недостаткам метода можно отнести занятость шины адреса в момент регенерации, когда доступ к другим устройствам ВМ блокирован.

Особенность метода CBR в том, что если в обычном цикле чтения/записи сигнал RAS всегда предшествует сигналу CAS, то при появлении сигнала CAS первым начинается специальный цикл регенерации. В этом случае адрес строки не передается, а микросхема использует свой внутренний счетчик, содержимое которого увеличивается на единицу при каждом очередном CBR-цикле. Режим позволяет регенерировать память, не занимая шину адреса, то есть более эффективен.

Автоматическая регенерация памяти связана с энергосбережением, когда система переходит в режим «сна» и тактовый генератор перестает работать. При отсутствии внешних сигналов RAS и CAS обновление содержимого памяти методами ROR или CBR невозможно, и микросхема производит регенерацию самостоятельно, запуская собственный генератор, который тактирует внутренние цепи регенерации.

Область применения статической и динамической памяти определяется скоростью и стоимостью. Главным преимуществом SRAM является более высокое быстродействие (примерно на порядок выше, чем у DRAM). Быстрая синхронная SRAM может работать со временем доступа к информации, равным времени одного тактового импульса процессора. Однако из-за малой емкости микросхем и высокой стоимости применение статической памяти, как правило, ограничено относительно небольшой по емкости кэш-памятью первого (L1), второго (L2) или третьего (L3) уровней. В то же время самые быстрые микросхемы динамической памяти на чтение первого байта пакета все еще требуют от пяти до десяти тактов процессора, что замедляет работу всей ВМ. Тем не менее благодаря высокой плотности упаковки ЗЭ и низкой стоимости именно DRAM используется при построении основной памяти ВМ.

Читайте также:  Просканировать все ip в сети

В зависимости от используемой технологии статическое ЗУ будет обладать различным сочетанием параметров быстродействия и потребляемой мощности. Например, статическая память, изготовленная по КМОП-технологии (память CMOS), имеет низкую скорость доступа, со временем порядка 100 нс, но отличается очень малым энергопотреблением. В ЭВМ такую память применяют для хранения конфигурационной информации компьютера при выключенном напряжении сети (в этой же микросхеме размещают и часы, отсчитывающие реальное время). Питание такой памяти может осуществляться от небольшой батарейки в течение продолжительного времени (до нескольких лет).

Виды статических ЗУ, отличающихся по технологии, способам организации и сфере применения, приведены на рисунке 6.3.

Для СОЗУ необходима высокоскоростная база ЭСЛ-типа, которая при большом потреблении мощности обеспечивает необходимое быстродействие.

Статическая RAM работает быстро (время доступа до десятых долей наносекунд), но стоит дорого, поскольку каждая ее ячейка содержит несколько транзисторов. В связи с высоким быстродействием высокоскоростные ЗУ (регистры, кэш-память) делают на статической памяти. Емкость такой памяти обычно невелика: от нескольких байт для регистров до нескольких десятков мегабайт для сверхоперативных ЗУ (кэш-память).

Рис. 6.3 Виды статических ЗУ

ЭП статического ЗУ, реализованного на асинхронном RS-триггере, построенного на основе логических элементов И-НЕ на многоэмиттерных транзисторах типа п-р-п, показан на рисунке 6.4. В зависимости от комбинации напряжений на этих линиях ЭП может работать в одном из трех режимов: хранение информации, запись новой информации, считывание хранимой информации.

Логика работы. Факт обращения к ЭП с целью записи или считывания информации достигается подачей на ША сигнала высокого уровня (логическая «1»). В этом случае нижние эмиттерные переходы обоих транзисторов закрываются.

При записи логической «1» по РШ на эмиттер транзистора VT подается сигнал низкого уровня: VT1 открывается по верхнему эмиттеру, a VT2 закрывается (свойство триггера с коллекторно-базовыми связями, КБС). По РШ протекает ток, что соответствует сигналу записи «1».

При записи логического «О» по РШ на эмиттер VT1 подается сигнал высокого уровня (>1,5 В). Транзистор VT1 закрывается по верхнему эмиттеру, следовательно, транзистор VT2 открывается (по свойству триггера с КБС). Ток в РШ отсутствует, что соответствует сигналу записи «О».

При переходе в режим хранения информации на ША подается сигнал низкого уровня, т. е. снимается сигнал высокого уровня обращения к ЭП. В этом случае VTI открыт по обоим переходам – ток в РШ отсутствует.

При считывании логической «1» после обращения к ЭП (сигналом высокого уровня на ША) по РШ подастся сигнал

Комментировать
457 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector