No Image

Система нелинейных уравнений с тремя неизвестными

СОДЕРЖАНИЕ
1 718 просмотров
10 марта 2020

1) Метод подстановки.

Идея метода. Выбирается уравнение, в котором одна из переменных наиболее просто выражается через остальные переменные. Полученное выражение этой переменной подставляется в оставшиеся уравнения системы.

  1. b) Комбинирование с другими методами.

Идея метода. Если метод прямой подстановки не применим на начальном этапе решения, то используются равносильные преобразования систем (почленное сложение, вычитание, умножение, деление), а затем проводят непосредственно прямую подстановку.

2) Метод независимого решения одного из уравнений.

Идея метода. Если в системе содержится уравнение, в котором находятся взаимно обратные выражения, то вводится новая переменная и относительно её решается уравнение. Затем система распадается на несколько более простых систем.

Решить систему уравнений

Рассмотрим первое уравнение системы:

Сделав замену , где t ≠ 0, получаем

Возвращаясь к старым переменным, рассмотрим два случая.

Корнями уравнения 4у 2 – 15у – 4 = 0 являются у1 = 4, у2 = — 1/4 .

Корнями уравнения 4х 2 + 15х – 4 = 0 являются х1 = — 4, х2 = 1/4 .

3)Сведение системы к объединению более простых систем.

  1. a) Разложение на множители способом вынесения общего множителя.

Идея метода. Если в одном из уравнений есть общий множитель, то это уравнение раскладывают на множители и, учитывая равенство выражения нулю, переходят к решению более простых систем.

  1. b) Разложение на множители через решение однородного уравнения.

Идея метода. Если одно из уравнений представляет собой однородное уравнение ( , то решив его относительно одной из переменных, раскладываем на множители, например: a(x-x1)(x-x2) и, учитывая равенство выражения нулю, переходим к решению более простых систем.

Решим первую систему

Идея метода. Если в системе есть выражение, представляющее собой произведение переменных величин, то применяя метод алгебраического сложения, получают однородное уравнение, а затем используют метод разложение на множители через решение однородного уравнения.

4) Метод алгебраического сложения.

Идея метода. В одном из уравнений избавляемся от одной из неизвестных, для этого уравниваем модули коэффициентов при одной из переменных, затем производим или почленное сложение уравнений, или вычитание.

5) Метод умножения уравнений.

Идея метода. Если нет таких пар (х;у), при которых обе части одного из уравнений обращаются в ноль одновременно, то это уравнение можно заменить произведением обоих уравнений системы.

Решим второе уравнение системы.

Пусть = t, тогда 4t 3 + t 2 -12t -12 = 0. Применяя следствие из теоремы о корнях многочлена, имеем t1 = 2.

Р(2) = 4∙2 3 + 2 2 — 12∙2 – 12 = 32 + 4 — 24 — 12 = 0. Понизим степень многочлена, используя метод неопределенных коэффициентов.

4t 3 + t 2 -12t -12 = (t – 2) (at 2 + bt + c).

4t 3 +t 2 -12t -12 = at 3 + bt 2 + ct — 2at 2 -2bt — 2c.

4t 3 + t 2 — 12t -12 = at 3 + (b – 2a) t 2 + (c -2b) t — 2c.

Получаем уравнение 4t 2 + 9t + 6 = 0, которое не имеет корней, так как D = 9 2 — 4∙4∙6 = -15 2 + у 2 = (х + у) 2 – 2ху = а 2 – 2в; х 3 + у 3 = (х + у)(х 2 – ху + у 2 ) = а(а 2 -3в);

х 2 у + ху 2 = ху (х + у) = ав; (х +1)∙(у +1) = ху +х +у+1 =а + в +1;

10) «Граничные задачи».

Идея метода. Решение системы получаются путем логических рассуждений, связанных со структурой области определения или множества значений функций, исследование знака дискриминанта квадратного уравнения.

Особенность этой системы в том, что число переменных в ней больше числа уравнений. Для нелинейных систем такая особенность часто является признаком «граничной задачи». Исходя из вида уравнений, попытаемся найти множество значений функции , которая встречается и в первом, и во втором уравнении системы. Так как х 2 + 4 ≥ 4, то из первого уравнения следует, что

Ответ (0;4;4), (0;-4;-4).

11) Графический метод.

Идея метода. Строят графики функций в одной системе координат и находят координаты точек их пересечения.

1) Переписав первое уравнение систем в виде у = х 2 , приходим к выводу: графиком уравнения является парабола.

2) Переписав второе уравнение систем в виде у =2/х 2 , приходим к выводу: графиком уравнения является гипербола.

3) Парабола и гипербола пересекаются в точке А. Точка пересечения только одна, поскольку правая ветвь параболы служит графиком возрастающей функции, а правая ветвь гиперболы — убывающей. Судя по построенной геометрической модели точка А имеет координаты (1;2). Проверка показывает, что пара (1;2) является решением обоих уравнений системы.

На итоговой аттестации в 9-х классах по модернизированным программам, предлагаются задачи, в которых требуется решить системы алгебраических, нелинейных уравнений. Школьники испытывают большие затруднения, встречаясь с такими заданиями, особенно, если речь идет о нелинейных системах уравнений. Этот раздел алгебры по праву считается одним из трудных, так как нет единых способов решения систем алгебраических уравнений.

Читайте также:  Почему на ресивере нет звука с флешки

Необходимо помочь школьникам преодолеть трудности при решении алгебраических систем нелинейных уравнений, научить отыскивать наиболее рациональный способ решения систем уравнений, тем самым подготовить выпускника основной школы к сдаче экзамена по математике, продолжению образования в выпускных классах средней школы с профильным обучением, а затем в вузе, где дисциплины математического цикла являются профильными.

Материал статьи излагается как углубленное изучение вопросов, связанных с решением нелинейных систем уравнений в 9 классе, предусмотренных программой основного курса математики.

Предлагаются некоторые способы решения нелинейных систем уравнений. Причем, среди предлагаемых примеров имеются, как достаточно простые, так и сложные.

При решении систем уравнений применяются различные методы:

а) разложение на множители;

б) исключение переменных;

в) алгебраическое сложение;

г) замена переменных;

д) системы однородных уравнений;

ж) метод введения новых переменных;

з) графический метод.

Рассмотрим некоторые методы решения нелинейных систем уравнений.

1. Метод разложения на множители

Метод разложения на множители алгебраических систем двух уравнений с двумя неизвестными заключается в следующем. Если в алгебраической системе

то всякое решение системы уравнений

является решением совокупности систем

Пример 1. Решить систему

Решение. Так как , а или

, то получаем:

Заметим, что множитель так как в этом случае правая часть второго уравнения системы также обратилась бы в нуль. Следовательно, система (*) равносильна системе

Решим второе уравнение:

Выразив x из первого уравнения и подставив во второе, получили уравнения для нахождения y. В первое уравнение системы вместо y подставляем найденное значение и находим значения x

, Ответ:

2. Метод исключения одной из неизвестных

Метод исключения неизвестных позволяет последовательно сводить решение данной системы к решению системы (или совокупности систем), содержащей на одну переменную меньше. Этот метод последовательного исключения основан на очевидном утверждении, что система уравнений

равносильна системе уравнений

и аналогично для большего числа переменных.

Пример 2. Решить систему

Решение. Левые части уравнений системы содержат одни и те же комбинации неизвестных. Умножим уравнения на подходящие множители с тем, чтобы исключить из системы одно из неизвестных. Из системы исключим сложив второе уравнение с первым, умноженным на -3. В результате получаем уравнение .

Решим данное уравнение путем замены.

Пусть xy = t, тогда , t1=2, t2=9.

Таким образом, исходная система распадается на системы:

и

В первом случае находим x 2 =1. Если x=1 то y=2 , а если x=-1, то y=-2.

Во втором случае, исключая , получаем x 2 =-209. Поэтому вторая из двух последних систем не имеем действительных решений.

3. Метод алгебраических преобразований уравнений системы

Уравнения системы можно складывать, вычитать, умножать на число, перемножать, делить, соблюдая при этом возможность выполнения таких операций. Заметим, что следствие системы, получаемое в результате алгебраических преобразований, содержит все решения исходной системы, и, кроме того, оно может содержать лишние корни.

Поэтому: 1) если следствие не имеет решений, то и исходная система не имеет решений; 2) если решениями следствия окажутся действительными числа, то их нужно подставить в исходную систему и проверить, являются ли они ее корнями; 3) если решениями следствиями окажутся алгебраические выражения, то их нужно рассматривать совместно с уравнениями исходной системы. В этом случае получим равносильную систему или совокупность систем.

Пример 3. Решить систему

Решение. ОДЗ:

4. Метод замены переменных

Метод замены неизвестных основан на следующем утверждении.

Пусть дана система уравнений и пусть система имеет k различных решений .

Тогда система (1) равносильна совокупности k систем

Пример 4. Решить систему

Решение.

Произведем замену. Пусть Тогда

Складывая уравнения, получим

Преобразуем первое уравнение:

5. Системы однородных уравнений

Система двух уравнений с двумя переменными вида

называется однородной (левые части обоих уравнений однородные многочлены степени n от двух переменных).

Однородные системы решаются комбинацией двух методов: линейного преобразования и введения новых переменных.

Пример 5. Решить систему

Решение. Первое уравнение системы однородное (напомним, что уравнение вида f(x,y)=0 где f(x,y) – однородный многочлен – называется однородным уравнением). Заметим, что если положить y=0 то из однородного уравнения 3x 2 +xy-2y 2 =0 находим x=0. Но пара чисел (0;0) не удовлетворяет второму уравнению системы, поэтому y≠0 и, следовательно, обе части однородного уравнения 3x 2 +xy-2y 2 =0 можно разделить на y 2 (это не приведёт к потере корней).

Получим и , откуда находим, что или , т.е. x= – y или .

Ответ:

Типичные ошибки при решении систем и методы их устранения

При решении некоторых систем иногда происходит потеря корней в ответе или появляются посторонние корни. Основная причина этого заключается в том, что осуществляются правдоподобные рассуждения, но теряется контроль над равносильностью переходов от одной системы к другой. Для того чтобы избежать подобных ошибок, нужно знать природу их появления и на определенном этапе решения произвести необходимые преобразования, проверку решения и т.д.

Читайте также:  Fdl2 failed incompatible partition

В качестве таких примеров рассмотрим решение нескольких систем нелинейных уравнений.

Пример 1. Решите систему уравнений

Неправильное решение. Вычтем из первого уравнения системы второе уравнение. Получим откуда x =11.

В этом случае корень уравнения, полученный после эквивалентного преобразования (вычли второе уравнение из первого), не проверили. Чтобы избежать подобной ошибки, необходимо после вычитания одного уравнения из другого решать систему уравнений, в которой обязательным является наличие уравнения, полученное после вычитания и одного из первоначальных уравнений.

Правильное решение. Выполним эквивалентные преобразования:

Таким образом, при решении системы уравнений, необходимо записать такое же количество уравнений, которое было в условии, чтобы не получить посторонний корень.

Правильный ответ: .

Пример 2. Решить систему уравнений

(1)

Решение. Выполним тождественное преобразование: разделим первое уравнение системы на второе уравнение, получим:

(2)

Решая систему методом подстановки, получим множество решений: <(3;0); (0;3)>.

Система (2) получена из системы (1) делением на число, отличное от нуля, поэтому системы (1) и (2) эквивалентны.

При решении систем нелинейных уравнений необходимо помнить о том, что такое тождественное преобразование как деление одного уравнения на другое не всегда приведет к правильному решению, так как может произойти потеря корня. Покажем это на следующем примере.

Пример 3. Решить систему уравнений

(3)

Решение. Выполним тождественное преобразование: разделим первое уравнение системы на второе уравнение, получим:

Ответ:

Но в этом случае произошла потеря решения <(2;0)>. Это произошло потому, что при делении не было наложено условие . Рассматривая условие , получаем х = 2.

Значит, метод деления одного уравнения на другое не безупречен, т.е. при переходе от системы к системе можем потерять решения.

  1. Азаров А.И., Барвенов С.А., Федосенко В.С., Шибут А.С. Системы алгебраических уравнений. Текстовые задачи. Справочное пособие для абитуриентов и школьников. 1998. – 288 с.
  2. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 11 класса. Учеб. пособие для учащихся шк. и классов с углубл. изуч. математики. 4-е изд. – М.: Просвещение, 1995. – 335 с.
  3. Галицкий М.Л., Гольдман А.М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов. Учеб. пособие для учащихся шк. и классов с углубл. изуч. курса математики. М.: Просвещение, 1992. – 271 с.
  4. Самусенко А.В., Казаченок В.В. Математика: Типичные ошибки абитуриентов. 2-е изд., испр. – Мн.: Выш. шк., 1995.- 185 с.
  5. Шарыгин И.Ф., Голубев В.И. Факультативный курс по математике: Решение задач. Учеб. пособие для 11 класса средней школы. – М.: Просвещение, 1991. – 384 с.
Нелинейные уравнения с двумя неизвестными
Системы из двух уравнений, одно из которых линейное
Однородные уравнения второй степени с двумя неизвестными
Системы из двух уравнений, одно из которых однородное
Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное
Примеры решения систем уравнений других видов

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A – некоторое множество пар чисел (x ; y) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

z = f (x , y) , (1)

причем в записи (1) числа x и y называют аргументами функции , а число z – значением функции , соответствующим паре аргументов (x ; y) .

Определение 2 . Нелинейным уравнением с двумя неизвестными x и y называют уравнение вида

f (x , y) = 0 , (2)

где f (x , y) – любая функция, отличная от функции

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

x 2 – 4xy + 6y 2 –
– 12 y +18 = 0 .
(3)

Решение . Преобразуем левую часть уравнения (3):

Таким образом, уравнение (3) можно переписать в виде

(x – 2y) 2 + 2(y – 3) 2 = 0 . (4)

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Пример 2 . Решить уравнение

sin (xy) = 2 . (5)

вытекает, что уравнение (5) решений не имеет.

Ответ : Решений нет.

Пример 3 . Решить уравнение

ln (x – y) = 0 . (6)

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

где y – любое число.

Системы из двух уравнений, одно из которых линейное

Определение 4 . Решением системы уравнений

Читайте также:  Sony f5321 xperia x compact universe black

называют пару чисел (x ; y) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 4 . Решить систему уравнений

(7)

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Таким образом, решениями системы (7) являются две пары чисел

и

Ответ : (– 1 ; 9) , (9 ; – 1)

Однородные уравнения второй степени с двумя неизвестными

Определение 5 . Однородным уравнением второй степени с двумя неизвестными x и y называют уравнение вида

где a , b , c – заданные числа.

Пример 5 . Решить уравнение

3x 2 – 8xy + 5y 2 = 0 . (8)

Решение . Для каждого значения y рассмотрим уравнение (8) как квадратное уравнение относительно неизвестного x . Тогда дискриминант D квадратного уравнения (8) будет выражаться по формуле

откуда с помощью формулы для корней квадратного уравнения найдем корни уравнения (8):

Ответ . Решениями уравнения (8) являются все пары чисел вида

( y ; y) или

где y – любое число.

Следствие . Левую часть уравнения (8) можно разложить на множители

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

(9)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – y , из второго уравнения системы (9) получаем уравнение

корнями которого служат числа y1 = 2 , y2 = – 2 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 2) , (2 ; – 2) .

,

из второго уравнения системы (9) получаем уравнение

которое корней не имеет.

Ответ : (– 2 ; 2) , (2 ; – 2)

Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное

Пример 7 . Решить систему уравнений

(10)

Решение . Совершим над системой (10) следующие преобразования:

  • второе уравнение системы оставим без изменений;
  • к первому уравнению, умноженному на 5 , прибавим второе уравнение, умноженное на 3 , и запишем полученный результат вместо первого уравнения системы (10).

В результате система (10) преобразуется в равносильную ей систему (11), в которой первое уравнение является однородным уравнением:

(11)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – 5y , из второго уравнения системы (11) получаем уравнение

которое корней не имеет.

,

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y1 = 3 , y2 = – 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 3) , (2 ; – 3) .

Ответ : (– 2 ; 3) , (2 ; – 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

(13)

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

(14)

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

(15)

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

(16)

У системы (16) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы:

Следовательно, решениями системы (16) являются две пары чисел

Из формул (13) вытекает, что , поэтому первое решение должно быть отброшено. В случае u2 = 5, v2 = 2 из формул (15) находим значения x и y :

Определение 6 . Решением системы из двух уравнений с тремя неизвестными называют тройку чисел (x ; y ; z) , при подстановке которых в каждое уравнение системы получается верное равенство.

Пример 9 . Решить систему из двух уравнений с тремя неизвестными

(17)

Решение . У системы (17) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное z через неизвестные x и y и подставить это выражение во второе уравнение системы:

(18)

Перепишем второе уравнение системы (18) в другом виде:

Поскольку квадрат любого числа неотрицателен, то выполнение последнего равенства возможно лишь в случае x = 4, y = 4 .

Ответ : (4 ; 4 ; – 4)

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы линейных уравнений» и нашим учебным пособием «Системы уравнений».

Комментировать
1 718 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector