No Image

Схемы частотомеров на цифровых микросхемах

СОДЕРЖАНИЕ
2 601 просмотров
10 марта 2020

Схема самодельного частотомера без входного узла, выполненный на микроконтроллере AT-tiny2313 и жидкокристаллическом дисплее DV-162. Схема с минимальным набором навесных элементов. Модуль предназначен для встраивания в лабораторные генераторы, а так же для построения на его основе частотомера .

Принципиальная схема простого частотомера, построенного на микросхемах HCF4026BEY, диапазон измеряемых частот от 1Гц до 10МГц. Сейчас радиолюбителям стала доступна зарубежная элементная база, а, подчас, она бывает даже доступнее отечественной. Вот пример, – искал счетчики К176ИЕ4 чтобы сделать .

Действие цифрового частотомера основано на измерении числа входных импульсов в течение образцового интервала времени в 1 секунду. Исследуемый сигнал подают на вход формирователя импульсов, который собран на транзисторе VT1 и элементе DD3.1, который вырабатывает электрические колебания прямоугольной .

Не сложная схема самодельного пятиразрядного частотомера с пределами измерений от 1Гц до 99999Гц, выполнен на микросхемах CD4001, CD4026, CD4040. Принципиальная схема пятиразрядного частотомера 1Гц до 99999Гц (CD4001, CD4026, CD4040). Это простой частотомер для измерения частоты .

Принципиальная схема самодельной приставки к мультиметру для измерения частоты в пределах 5Гц-20МГц. В некоторых цифровых мультиметрах, например, MY64, MY68, М320, M266F имеется встроенная функция измерения частоты, благодаря чему мультиметр может использоваться как цифровой частотомер .

Этот частотомер может работать и как самостоятельное устройство, так и всоставе генератора ЗЧ в качестве его цифровой шкалы. Частотомер предназначен для измерения частоты в пределах до 100 кГц. (0-99999 Гц). Схема состоит из входного усилителя на транзисторе VТ1, измерительного счетчика .

Частотомер, схема которого приведена ниже, может быть использован в качестве цифровой шкалы для какого-то устройства, к примеру для лабораторного генератора звуковой частоты (ЗЧ). Он измеряет частоту от 1 до 99999 Гц. Входное напряжение сигнала должно быть не ниже 0,5-0,6V. Но, при использовании .

Микросхема ММ74С926 (или другие аналоги 74C926 представляет собой десятичный четырехразрядный счетчик, объединенный с системой индикации из дешифратора в код для семисегментного индикатора и схемы опроса для динамической индикации. На основе этой микросхемы можно строить различные приборы, в том .

Частотомеры, построенные по "медленной" схеме популярны среди радиолюбителей потому, что их схема проще и не требует применения регистров или триггеров для запоминая данных предыдущего измерения. Но, недостаток таких частотомеров вих медленности. Многоразрядный частотомер без переключателя .

Аналоговый частотомер позволяет при измерениях частоты следить за динамикой процесса. Особенно это важно, когда необходимо не только измерить истинное значение частоты, но и проследить за ее изменениями во времени. Частотомеры с цифровыми отсчетами более точны, но и более сложны по схеме .

  1. На PIC16F628
  2. Частотомер — цифровая шкала. Схема и инструкция по монтажу
  3. На микросхеме

Сегодня рассмотрим пошагово создание частотомера своими руками. Первым делом поговорим о характеристиках и особенностях прибора на pic16f628a, рассмотрим схему и особенности монтажа. Вторая схема частотомера — цифровой шкалы. Уделим внимание подбору необходимых комплектующих и остановимся детальнее на сборке. Третья схема представляет простой частотомер на микросхемах. Но обо всём по порядку.

Частотомер на PIC16F628 своими руками

Первым делом рассмотрим простую и дешевую схему частотомера. Он может измерять сигналы от 16 до 100Гц с максимальной амплитудой 15В. Чувствительность высокая, разрешение — 0,01 Гц. Входной сигнал может быть синусоидальной, прямоугольной или треугольной волной.

Частотомер может использоваться во многих приложениях. Например, для наблюдения за точностью генератора, для измерения частоты сети или нахождения оборотов двигателя, соединенного с датчиком.

Схема частотомера и необходимые детали для монтажа

Файл печатной платы представлен в формате PDF, архив можно скачать ниже. Вы можете сделать плату используя метод ЛУТ.

CCP (Capture(Захват)/Compare(Сравнение)/PWM(ШИМ)) модуль PIC-микроконтроллера считывает входной сигнал. Используется только функция захвата.

Необходимые детали для сборки частотомера:

  • МК PIC 8-бит — PIC16F628A (PIC16F628-04/P).
  • 4 биполярных транзистора — BC547.
  • 2 керамических конденсатора — 22 пФ.
  • 12 резисторов — 1х4.7 кОм, 4х1 кОм, 7х330 Ом.
  • Кварц — 4 МГц.
  • 4 семисегментных индикатора (общий катод).

Радиоэлементы для изоляции:

  • Биполярный транзистор — BC547.
  • Выпрямительный диод — 1N4148
  • Оптопара — 4N25M.
  • 4 резистора — 2х1 кОм, 1х10 кОм, 1х470 Ом.

Необходимые комплектующие для сборки питания:

  • Линейный регулятор — LM7805.
  • 2 электролитических конденсатора — 100 мкФ, 16В.
  • 2 полиэфирных конденсатора — 220 нФ.

Дисплеи — красные, 7-сегментные светодиодные, 14,2 мм с общим катодом.

Рекомендации по подключению частотомера

Перед измерением частоты входного сигнала, он должен быть преобразован в прямоугольный. Для этой цели используется схема оптической развязки с оптроном 4N25. Таким образом, входной сигнал надежно изолирован от микроконтроллера и превращается в меандр. Амплитуда сигнала не должна превышать 15В. Если это произойдет, резистор 1кОм может сгореть. Если вы хотите измерить частоту сети, вы должны использовать 220В/9В трансформатор.

  • Схема DDS-генератора сигналов

Напряжение питания должно быть в пределах 8–12В. При большем напряжении схема может быть повреждена. Нужно быть осторожными с полярностью при подключении питания.

Принципиальная схема счетчика (частотомера) приведена в файле проекта. Есть 4 дисплея, которые работают по методу мультиплексирования (динамическая индикация). Для измерения вывод RB3 подключен к выходу оптического изолятора. 5 вывод второго дисплея подключен к питанию через резистор 1 кОм, так что точка после второго дисплея горит. Это соединение не показано на схеме.

C-код, написанный в PIC C компиляторе, доступен для скачивания. HEX также прилагается.

Мы использовали два дополнительных разъема. Первый (18 контактный, 2 ряда) для микроконтроллера PIC16F628, и второй (40 контактный, 2 ряда).

Читайте также:  Msi x99a sli plus обзор

Видео о сборке частотомера на PIC16F628A:

Частотомер — цифровая шкала. Схема и инструкция по монтажу

Рассматриваемое устройство выполняет функции:

  • частотомера с выводом измеренного значения частоты в герцах (до 8 разрядов);
  • цифровой шкалы с АПЧ генератора плавного диапазона (ГПД) для радиолюбительского трансивера;
  • электронных часов.

Основу устройства составляет программируемый контроллер PIC16F84 фирмы Microchip. Быстродействие и широкие функциональные возможности этого контроллера позволяют подавать сигнал частотой до 50 МГц прямо на его счетный вход, то есть можно обойтись без предварительного делителя, обычно применяемого в устройствах подобного типа.

Основные характеристики цифрового частотомера

  1. Диапазон измеряемых частот — 0–50 МГц.
  2. Диапазон программируемых значений ПЧ — 0–16 МГц.
  3. Минимальный уровень входного сигнала — 200 мВ.
  4. Время измерения частоты — 1 с.
  5. Погрешность измерения — ±1 Гц.
  6. Напряжение питания — 5±0,5 В.
  7. Ток потребления устройства — не более 30 мА.

Наличие электрически перепрограммируемой памяти данных внутри PIC16F84 позволило без специального оборудования перепрограммировать значение промежуточной частоты (ПЧ). Это дает возможность оперативно встраивать цифровую шкалу в трансивер с любым (0–16 МГц) значением промежуточной частоты.

  • Смотрите схему измерителя емкости конденсаторов

В качестве устройства индикации применен модуль ЖКИ от телефонных аппаратов типа Panaphone. Ввод информации в модуль осуществляется по двум линиям в последовательном коде. Полезной оказалась встроенная функция электронных часов. Малый ток потребления обуславливает малые помехи радиоприемной аппаратуре, в которую может встраиваться данное устройство.

Цифровой частотомер — схема и её описание, необходимые комплектующие

Список необходимых радиоэлементов:

  • Микросхема (DD1) — КР1554ЛА3.
  • МК PIC 8-бит (DD2) — PIC16F84A.
  • 2 биполярных транзистора (VT1, VT2) — КТ368А и КТ315Б.
  • 6 диодов (VD1–VD6) — КД521Б.
  • 3 конденсатора (С1, С2, С6) — 0.1 мкФ, 0.033 мкФ, 68 пФ.
  • Электролитический конденсатор (С3, С4, С7) — 6.8 мкФ и 2х100 мкФ.
  • Подстроечный конденсатор (С5) — 68 пФ.
  • 14 резисторов — R1 (330 Ом); R2 (47 кОм); R3, R4, R6, R8–R11 (7х15 кОм); R5, R12–R14 (4х5.1 кОм); R7 (430 Ом).
  • Кварцевый резонатор (ZQ1) — 4 МГц.
  • LCD-дисплей (HG1) — КО-4В, от телефонного аппарата.
  • 3 тактовых кнопки S1, S2, WR_IF.
  • Кнопка на размыкание НК.
  • Батарея питания — 1.5 В.
  • Блок питания — 5В.

На транзисторе VT1 и микросхеме DD1 выполнен формирователь входного сигнала. Микросхема DD2 выполняет функции контроллера частотомера, цифровой шкалы с АПЧ, управления модулем ЖКИ, а также позволяет оперативно изменять режим работы устройства.

Если на выводе 1 микросхемы DD2 присутствует уровень логической «1», то прибор выполняет функцию частотомера, если уровень логического «0» — цифровой шкалы. В режиме цифровой шкалы на индикатор выводится значение частоты входного сигнала равное Рвх+Р„ч при наличии уровня логической «1» на выводе 2 микросхемы DD2; или Fвх-Fпч — при уровне логического «0» на выводе 2 DD2.

  • Смотрите, как сделать щуп для осциллографа

Для записи необходимого значения Fпч надо в режиме частотомера подать на вход устройства сигнал с частотой Fпч (сигнал опорного генератора или телеграфного гетеродина, настроенных на центральную частоту полосы пропускания фильтра ПЧ), а на вывод 8 микросхемы DD2 на время 1,5–2 с подать уровень логического «0». Значение Fпч сохраняется в памяти при отключении питания и может неоднократно (не менее 106 раз) перепрограммироваться приведенным выше способом.

Система АПЧ ГПД работает следующим образом. После измерения частоты входного сигнала производится анализ числа равного сотням герц и, если оно четное, на вывод 8 микросхемы DD2 выдается уровень логического «0». Если нечетное, на вывод 8 микросхемы DD2 выдается уровень логической «1». Эти логические сигналы, предварительно проинтегрировав, можно использовать для управления емкостью варикапа в контуре ГПД. В результате осуществляется стабилизация частоты возле четных значений сотен герц с точностью ±10 Гц.

В режиме цифровой шкалы можно осуществить гашение десятков и единиц герц, если установить уровень логического «0» на выводе 9 микросхемы DD2.

Для перевода устройства в режим электронных часов необходимо нажать кнопку «НК». Для корректировки часов и минут служат кнопки «S1» и «S2».

Печатная плата частотомера:

Скачать прошивку и исходный код можно ниже:

Смотрите также видео, как собрать частотомер своими руками:

Простой частотомер на микросхеме своими руками — характеристики и схема

Параметры предлагаемого частотомера приведены в следующей таблице:

Режим работы Частотомер Частотомер Цифровая шкала
Диапазон измерений 1 Гц…20 МГц 1–200 МГц 1–200 МГц
Дискретность 1 Гц 10 Гц 100 Гц
Чувствительность 40 мВ 100 мВ 100 мВ

Данный частотомер обладает целым рядом преимуществ по сравнению с предшествующими:

  • современная дешевая и легко доступная элементная база;
  • максимальная измеряемая частота — 200 МГц;
  • совмещение в одном приборе частотомера и цифровой шкалы;
  • возможность увеличения максимальной измеряемой частоты до 1,2 ГГц при незначительной доработке входной части прибора;
  • возможность коммутации во время работы до 4 ПЧ.

Измерение частоты осуществляется классическим способом: подсчет количества импульсов за фиксированный интервал времени.

Входной сигнал через конденсатор С4 поступает на базу транзистора VT1, который усиливает входной сигнал до уровня, необходимого для нормальной работы микросхемы DD2. Микросхема DD2 193ИЕЗ представляет собой высокочастотный делитель частоты, коэффициент деления которого равен 10.

Ввиду того что в используемом микроконтроллере К1816ВЕ31 максимальная частота счетного входа Т1 f=Fкв/24, где Fкв — частота используемого кварца, а в частотомере Fкв=8,8672 МГц, сигнал с высокочастотного делителя поступает на дополнительный делитель частоты, представляющий собой десятичный счетчик DD3. Процесс измерения частоты начинается с обнуления делителя DD3, сигнал сброса которого поступает с вывода 12 микроконтроллера DD4. Сигнал разрешения прохождения измеряемого сигнала на десятичный делитель поступает с вывода 13 DD4 через инвертор DD1.1 на вывод 12 DD1.3.

Читайте также:  Сервер времени ntp яндекс

По окончанию фиксированного интервала времени измерения на выводе 13 DD4 появляется высокий уровень, который через инвертор DD1.1 запрещает прохождение измеряемого сигнала на делитель DD3, и начинается процесс преобразования накопленных импульсов времени в частоту, а также подготовка данных для вывода на индикацию.

Принципиальная схема частотомера и необходимые детали

Список необходимых радиоэлементов:

  • 6 микросхем — DD1 (К555ЛА3); DD2 (К193ИЕ3); DD4 (КР1816ВЕ31); DD5, DD7 (2хК555ИР22); DD6 (К555ИД7); DD8 (К573РФ2).
  • Логическая ИС (DD3) — К555ИЕ19.
  • 17 биполярных транзисторов (VT1, VT2–VT17) — КТ368А и 16хКТ361В
  • Стабилитрон (VD1) — КС113А.
  • 7 конденсаторов — С1 (0.01 мкФ); С2, С8 (2х0.1 мкФ); С3 (56 пФ); С4 (1000 пФ); С5 (22 пФ); С6 (12 пФ).
  • Подстроечный конденсатор (С7) — 5-20 пФ.
  • Электролитический конденсатор (С9) — 3.3 мкФ.
  • 41 резистор — R1 (51 Ом); R2, R25–R40 (17х68 кОм, R2 по ошибке в схеме указана как R3); R3 (10 кОм); R4, R6 (2х560 Ом); R5 (33 Ом); R6, R7 (2х1 кОм, в схеме по ошибке два резистора R6); R8–R23 (16х20 кОм); R24 (2 кОм).
  • Кварцевый резонатор (ZQ1) — 8.86 МГц.
  • Вакуумно люминисцентный индикатор (HL1) — ИВ-18.
  • Переключатель (S1)
  • Блок переключателей (S2)

Данный прибор может работать как в высокочастотном, так и в низкочастотном диапазонах. При работе в низкочастотном диапазоне переключатель S1 необходимо установить в верхнее положение и сигнал подавать на вход 2 (вывод 9) платы частотомера. Для измерения частоты от 1 Гц до 20 МГц необходимо использовать формирователь.

Программа работы микроконтроллера находится в ПЗУ DD8, микросхема DD5 используется для мультиплексирования адресов микроконтроллера. Прошивка ПЗУ для работы прибора в качестве частотомера приведена в таблице:

Для получения максимальной эффективности использования микроконтроллера в приборе применена динамическая индикация.

При использовании частотомера в качестве цифровой шкалы на вывод 22 DD8 необходимо с помощью переключателя S2.3 подать высокий уровень. Выбор значения ПЧ производится путем соединения выводов 10,11 микросхемы DD4 с землей. Вход 3 (вывод 5) платы частотомера предназначен для включения выбранной промежуточной частоты (например, при переходе с приема на передачу). Во время работы прибора в режиме цифровой шкалы младшие разряды индикатора показывают сотни герц. Работе прибора в режиме цифровой шкалы соответствует иная прошивка ПЗУ.

Печатная плата частотомера и рекомендации по монтажу своими руками

Печатная плата частотомера:

Печатная плата изготовлена из двухстороннего стеклотекстолита размерами 100х130 мм. Индикатор крепится непосредственно на печатной плате двумя хомутами из обычного монтажного провода. Для установки микросхемы DD8 предусмотрена панелька. При разводке платы предусматривалась необходимость размещения транзистора VT1 в максимальной близости к DD2.

Вокруг VT1 и DD2 оставлено возможно большее количество фольги с обеих сторон с целью экранирования высокочастотных цепей. В конструкции в качестве индикатора HL1 применен ИВ-18 как наиболее популярный в радиолюбительских конструкциях. В случае необходимости миниатюризации конструкции индикатор ИВ-18 может быть заменен на ИВ-21, который имеет значительно меньшие габаритные размеры. В этом случае необходимо уменьшить напряжение накала и отрицательное напряжение на катоде согласно паспортным данным. Микросхему DD1 желательно применять серии 1533 как более высокочастотную.

Для питания частотомера используется блок питания с напряжением от -20 В до -30 В и напряжением накала — до 4,8 В при использовании индикатора ИВ-18. В указанной схеме блока питания желательно диод КД503 заменить на стабилитрон КС133, что исключает ложную подсветку сегментов индикатора.

Наладку частотомера следует начинать с проверки на обрыв всех без исключения соединительных проводников печатной платы, затем проверить на отсутствие замыкания соседних на печатной плате соединительных проводников. Сразу же после подачи питания на частотомер проконтролируйте ток потребления по напряжению +5 В. Он не должен превышать 250 мА.

Затем измерьте напряжение на коллекторе VT1, оно должно находиться в пределах 2,0–3,0 В. Установка указанного напряжения осуществляется подбором резистора R3. При безошибочном монтаже, исправных деталях и отсутствии ошибок в программе окончательное налаживание прибора заключается в точной установке частот задающего генератора микроконтроллера с помощью конденсатора С7 в соответствии с показаниями образцового частотомера.

Благодаря программно-управляемому процессу измерения можно путем незначительного изменения программы микроконтроллера применять недесятичные высокочастотные делители. Были опробованы в данном приборе микросхемы 193ПП1 (коэффициент деления — 704), 193ИЕ6 (коэффициент деления — 256). Испытания показали, что максимальная частота измеряемого сигнала достигает значения 1 ГГц. Наиболее предпочтительной оказалась микросхема 193ПЦ1, поскольку она имеет входной усилитель. Микроконтроллер К181ВЕ51 можно заменить на К1816ВЕ31, К1830ВЕ31, К1830ВЕ51 или их зарубежные аналоги — 8031, 80С31. При отсутствии микросхемы 193ИЕЗ можно заменить ее К500ИЕ137, включив ее по типовой схеме.

Видео, как собрать частотомер на одной микросхеме:

Данная статья предназначена для тех, кто не хочет «заморачиваться» с МК.

Каждый радиолюбитель в процессе своей творческой деятельности сталкивается с необходимостью оборудования своей «лаборатории» необходимыми измерительными приборами.
Одним из приборов – это частотомер. У кого есть возможность, тот покупает готовый, а кто-то и собирает свою конструкцию, по своим возможностям.
Сейчас много различных конструкций, выполненных на МК, но встречаются и на цифровых микросхемах (как говорится «гугл в помощь!»).
После «ревизии» в своих закромах обнаружилось, что имеются в наличии цифровые микросхемы серий 155, 555, 1533, 176, 561, 514ИД1(2) (простая логика – ЛА, ЛЕ, ЛН, ТМ, средней сложности – ИЕ, ИР, ИД, еще 80-90 г.г. выпуска, выбрасывать их – «жаба» задавила!) на которых можно собрать не сложный приборчик, из тех компонентов, которые были под рукой в данный момент.
Захотелось просто творчества, поэтому приступил к разработке частотомера.

Читайте также:  Ntfs hdd auto detection failed ps3

Рисунок 1.
Внешний вид частотомера.

Блок-схема частотомера:

Рисунок 2.
Блок-схема частотомера.

Схему взял из журнала «Радио» 80-х годов (точно не помню, но вроде как частотомер Бирюкова). Ранее повторял её, работой был доволен. В формирователе использована К155ЛА8 (уверенно работает на частотах до 15-20 мГц). При использовании в частотомере микросхем 1533 серии (счётчики, входной формирователь) рабочая частота частотомера составляет 30-40 мГц.


Рисунок 3.
Входной формирователь и ЗГ измерительных интервалов.

Задающий генератор, формирователь измерительных интервалов.

Задающий генератор собран на часовой МС серии К176, изображён на рисунке №3 вместе с входным формирователем.
Включение МС К176ИЕ12 типовое, каких-либо отличий нет. Формируются частоты 32,768 кГц, 128 Гц, 1,024 кГц, 1 Гц. Используется в ЧС только 1 Гц. Для формирования управляющего сигнала для ВУ эта частота делится на 2 (0,5 Гц) МС К561ТМ2 (CD4013A) (используется один D-триггер).


Рисунок 4.
Сигналы интервалов.

Формирователь сигналов сброса счетчиков КР1533ИЕ2 и записи в регистры хранения К555ИР16

Собран на МС К555(155)АГ3 (два ждущих мультивибратора в одном корпусе), можно использовать и две МС К155АГ1 (смотри рис.№3).
По спаду управляющего сигнала МС АГ3 первый ж/м формирует импульс Rom – записи в регистры хранения. По спаду импульса Rom формируется вторым ж/м импульс сброса триггеров счетчиков КР1533ИЕ2 Reset.


Рисунок 5.
Сигнал сброса.

Для гашения незначащих нулей при измерении частоты собран блок на 2-х К555ИР16 и 4-х К555(155)ЛЕ1 (схемку нашел на просторах интернета, только немного подкорректировал под себя и имеющуюся элементарную базу).
Можно упростить частотомер и не собирать схему гашения незначащих нулей (на рисунке №9 изображена схема частотомера без схемы гашения незначащих нулей), в этом случае просто будут светиться все индикаторы, смотрите сами, как Вам лучше.
Я её собрал потому, что мне просто так приятнее смотреть на табло частотомера.


Рисунок 6. Схема гашения незначащих нулей.

Включение счетчиков КР1533ИЕ2, регистров К555ИР16, дешифраторов КР514ИД2 типовое, согласно документации.


Рисунок 7.
Схема включения счётчиков и дешифраторов.

Весь ЧС собран на 5-х платах:
1, 2 – счетчики, регистры и дешифраторы (на каждой плате по 4-е декады);
3 – блок гашения незначащих нулей;
4 – задающий генератор, формирователь измерительных интервалов, формирователь сигналов Rom и Reset;
5 – блок питания.

Размеры плат: 1 и 2 – 70х105, 3 и 4 – 43х100; 5 – 50х110.


Рисунок 8.
Подключение схемы гашения незначащих нулей в частотомере.

Блок питания. Собран на двух МС 7805. Включения типовое, как рекомендует завод-изготовитель. Для принятия решения по блоку питания были проведены замеры тока потребления ЧС, так же проверялось возможность применения ИБП и БП с ШИМ стабилизацией. Проверялись: ИБП собранный на TNY266PN (5В, 2А), БП с ШИМ на основе LM2576T-ADJ (5В, 1,5А). Общее замечания – ЧС работает не корректно, т.к. по цепи питания проходят импульсы с частотой работы драйверов (для TNY266PN около 130 кГц, для LM2576T-ADJ – 50 кГц). Применение фильтров большого изменения не выявили. Так, что остановился на обыкновенном БП – транс, диодный мост, электролиты и две МС 7805. Ток потребления всего ЧС (на индикаторах все «8») около 0,8А, когда индикаторы погашены – 0,4А.


Рисунок 9.
Схема частотомера без схемы гашения незначащих нулей.

В блоке питания использовал две МС 7805 для питания ЧС. Одна МС стабилизатора питает плату входного формирователя, блока управления дешифраторами (гашение незначащих нулей) и одной платы счетчиков-дешифраторов. Вторая МС 7805 – питает другую плату счетчиков-дешифраторов и индикаторы. Можно бп собрать и на одной 7805, но греться будет прилично, встанет проблема с отведением тепла. В ЧС можно применять МС серий 155, 555, 1533. Все зависит от возможностей….


Рисунок 10, 11, 12, 13.
Конструкция частотомера.

Возможная замена: К176ИЕ12 (MM5368) на К176ИЕ18, К176ИЕ5 (CD4033E); КР1533ИЕ2 на К155ИЕ2 (SN7490AN, SN7490AJ), К555ИЕ2 (SN74LS90); К555ИР16 (74LS295N) можно заменить на К155ИР1 (SN7495N, SN7495J) (отличаются одним выводом), или применить для хранения информации К555(155)ТМ5(7) (SN74LS77, SN74LS75); КР514ИД2 (MSD101) дешифратор для индикаторов с ОА, можно применить и КР514ИД1 (MSD047) дешифратор для индикаторов с ОК; К155ЛА8 (SN7403PC) 4 элемента 2И-НЕ с открытым коллектором – на К555ЛА8; К555АГ3 (SN74LS123) на К155АГ3 (SN74123N, SN74123J), или две К155АГ1 (SN74121); К561ТМ2 (CD4013A) на К176ТМ2 (CD4013E). К555ЛЕ1 (SN74LS02).

P.S. Можно использовать различные индикаторы с ОА, только ток потребления на один сегмент не должен превышать нагрузочной способности дешифратора по выходу.. Ограничительные резисторы зависят от типа применяемого индикатора (в моем случае 270 ом).

Ниже в архиве есть все необходимые файлы и материалы для сборки частотомера.

Удачи всем и всего наилучшего!

Архив "Частотомер".

Комментировать
2 601 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector