No Image

Сдвиговый регистр 74hc595 arduino

СОДЕРЖАНИЕ
566 просмотров
10 марта 2020

Множим выходы с помощью сдвигового регистра 74HC595

Рассмотрим типичную ситуацию, когда вам нужно больше выходов (пинов), чем может предложить контроллер Arduino. В этом случае самый простой выход — использовать сдвиговый регистр. В данном примере используется 74HC595.

74HC595 — восьмиразрядный сдвиговый регистр с последовательным вводом, последовательным или параллельным выводом информации, с триггером-защелкой и тремя состояниями на выходе.

Другими словами этот регистр позволяет контролировать 8 выходов, используя всего несколько выходов на самом контроллере. При этом несколько таких регистров можно объединять последовательно для каскадирования. Другие подходящие регистры можно поискать по комбинации "595" и "596" в серийном номере. Так, например, STP16C596 может управлять 16 светодиодами одновременно без использования дополнительных резисторов.

В данной схеме используется принцип синхронизированной последовательной передачи сигнаналов. Необходимые значения сигнала (биты HIGH или LOW) передаются в регистр один за другим, при этом регистр получает синхронизирующий сигнал, который заставляет его считать сигнал с входа. Когда байт (1 байт = 8 бит) считан, значения всех 8 бит распределены по выходам. То есть передаем в регистр сигналы последовательно, на выходах регистра имеем параллельно 8 сигналов.

74HC595 может отдавать сигналы не только параллельно, но и последовательно. Это необходимо при объединении нескольких регистров, для получения 16 и более выходов. В этом случае первые 8 бит сигнала передаются на следующий регистр для параллельного вывода на нем, об этом будет рассказано более подробно во втором примере.

Три возможных состояния на выходе, упомянутые выше, означают, что выход регистра может иметь не только логический ноль или единицу (HIGH или LOW), но и быть в высокоомном (высокоимпедансном) состоянии — когда выход отключен от схемы. В высокоомное состояние не может быть переведен отдельный выход, а только все выходы регистра разом. Если мы говорим об управлении светодиодами, это может быть полезно в случае, когда мы хотим переключить управление ими на другой контроллер. В примере ниже это состояние никак не используется и довольно редко может быть полезно.

Распиновка входов/выходов регистра
Пины 1-7, 15 Q0 " Q7 Параллельные выходы
Пин 8 GND Земля
Пин 9 Q7" Выход для последовательного соединения регистров
Пин 10 MR Сброс значений регистра. Сброс происходит при получение LOW
Пин 11 SH_CP Вход для тактовых импульсов
Пин 12 ST_CP Синронизация ("защелкивание") выходов
Пин 13 OE Вход для переключения состояния выходов из высокоомного в рабочее
Пин 14 DS Вход для последовательных данных
Пин 16 Vcc Питание
Пример с одним регистром
  • GND (пин 8) на землю
  • Vcc (пин 16) к питанию 5В
  • OE (пин 13) на землю
  • MR (пин 10) к питанию 5В

Итак, мы запитали регистр и сделали все выходы активными. Это несколько упрощенный способ подключения, так как в момент подачи питания на схему на выходах будут случайные значения. Можно контролировать пин MR и OE непосредственно с Arduino, чтобы обнулить входы и/или подключить выходы в нужный момент. Для упрощения схемы и минимизации количества задействованных выходов Arduino мы будем использовать более простую схему, так как значения регистров и выводов будут перезаписаны, как только программы начнет работать.

Соединяем с Arduino:

  • DS (пин 14) с 11-ым цифровой выход Arduino (на схеме синий провод)
  • SH_CP (пин 11) с 12-ым цифровым выходом (желтый провод)
  • ST_CP (пин 12) c 8-ым (зеленый провод)

Далее эти выходы в тексте и коде именуются dataPin, clockPin и latchPin соответственно. Обратите внимание на конденсатор 0.1 микрофарада на latchPin, он минимизирует шум в схеме при подаче "защелкивающего" импульса.

Подключаем светодиоды к выходам регистра 74HC595, катод (короткая ножка) светодиода подключается к общей земле, а анод (длинная ножка) через ограничительный 220-ОМ резистор к выходам регистра. При использовании регистров отличных от 74HC595 следует свериться с документацией и проверить схему подключения. К некоторым регистрам светодиоды подключаются наоборот — катод к выходам.

Ниже приведен код трех программ. Первая, "Hello world", выводит значения байта от 0 до 255. Вторая по одному включает светодиоды. Третья циклически проходит по массиву.

Пониманию кода могут помочь "временная диаграмма сигналов" регистра и "таблица логики". Когда clockPin переглючается с LOW на HIGH, регистр считывает значения с DS пина. По мере считывания данные записываются во внутреннюю память. Когда latchPin переключается с LOW на HIGH, данные "защелкиваются", то есть передаются на выходы регистра, включая светодиоды.

Пример использования каскада сдвиговых регистров

В этом примере подключаются два регистра, доводя количество выходов до 16, при это на Arduino по прежнему задействовано то же количество выходов.

Подключаем второй регистр к питанию и общей земле точно так же, как и первый.

Далее DS вход (пин 14) подключается к Q7′ выходу (пин 9) первого регистра (синий провод). А SH_CP (пин 11) и ST_CP (pin 12) подключаются параллельно регистру к соответствующим входам первого регистра. Желтый и зеленый провод соответственно.

Читайте также:  Divinity original sin 2 как перенести сохранения

К выходам второго регистра подключаем зеленые светодиоды.

Множим выходы с помощью сдвигового регистра 74HC595

Рассмотрим типичную ситуацию, когда вам нужно больше выходов (пинов), чем может предложить контроллер Arduino. В этом случае самый простой выход — использовать сдвиговый регистр. В данном примере используется 74HC595.

74HC595 — восьмиразрядный сдвиговый регистр с последовательным вводом, последовательным или параллельным выводом информации, с триггером-защелкой и тремя состояниями на выходе.

Другими словами этот регистр позволяет контролировать 8 выходов, используя всего несколько выходов на самом контроллере. При этом несколько таких регистров можно объединять последовательно для каскадирования. Другие подходящие регистры можно поискать по комбинации "595" и "596" в серийном номере. Так, например, STP16C596 может управлять 16 светодиодами одновременно без использования дополнительных резисторов.

В данной схеме используется принцип синхронизированной последовательной передачи сигнаналов. Необходимые значения сигнала (биты HIGH или LOW) передаются в регистр один за другим, при этом регистр получает синхронизирующий сигнал, который заставляет его считать сигнал с входа. Когда байт (1 байт = 8 бит) считан, значения всех 8 бит распределены по выходам. То есть передаем в регистр сигналы последовательно, на выходах регистра имеем параллельно 8 сигналов.

74HC595 может отдавать сигналы не только параллельно, но и последовательно. Это необходимо при объединении нескольких регистров, для получения 16 и более выходов. В этом случае первые 8 бит сигнала передаются на следующий регистр для параллельного вывода на нем, об этом будет рассказано более подробно во втором примере.

Три возможных состояния на выходе, упомянутые выше, означают, что выход регистра может иметь не только логический ноль или единицу (HIGH или LOW), но и быть в высокоомном (высокоимпедансном) состоянии — когда выход отключен от схемы. В высокоомное состояние не может быть переведен отдельный выход, а только все выходы регистра разом. Если мы говорим об управлении светодиодами, это может быть полезно в случае, когда мы хотим переключить управление ими на другой контроллер. В примере ниже это состояние никак не используется и довольно редко может быть полезно.

Распиновка входов/выходов регистра
Пины 1-7, 15 Q0 " Q7 Параллельные выходы
Пин 8 GND Земля
Пин 9 Q7" Выход для последовательного соединения регистров
Пин 10 MR Сброс значений регистра. Сброс происходит при получение LOW
Пин 11 SH_CP Вход для тактовых импульсов
Пин 12 ST_CP Синронизация ("защелкивание") выходов
Пин 13 OE Вход для переключения состояния выходов из высокоомного в рабочее
Пин 14 DS Вход для последовательных данных
Пин 16 Vcc Питание
Пример с одним регистром
  • GND (пин 8) на землю
  • Vcc (пин 16) к питанию 5В
  • OE (пин 13) на землю
  • MR (пин 10) к питанию 5В

Итак, мы запитали регистр и сделали все выходы активными. Это несколько упрощенный способ подключения, так как в момент подачи питания на схему на выходах будут случайные значения. Можно контролировать пин MR и OE непосредственно с Arduino, чтобы обнулить входы и/или подключить выходы в нужный момент. Для упрощения схемы и минимизации количества задействованных выходов Arduino мы будем использовать более простую схему, так как значения регистров и выводов будут перезаписаны, как только программы начнет работать.

Соединяем с Arduino:

  • DS (пин 14) с 11-ым цифровой выход Arduino (на схеме синий провод)
  • SH_CP (пин 11) с 12-ым цифровым выходом (желтый провод)
  • ST_CP (пин 12) c 8-ым (зеленый провод)

Далее эти выходы в тексте и коде именуются dataPin, clockPin и latchPin соответственно. Обратите внимание на конденсатор 0.1 микрофарада на latchPin, он минимизирует шум в схеме при подаче "защелкивающего" импульса.

Подключаем светодиоды к выходам регистра 74HC595, катод (короткая ножка) светодиода подключается к общей земле, а анод (длинная ножка) через ограничительный 220-ОМ резистор к выходам регистра. При использовании регистров отличных от 74HC595 следует свериться с документацией и проверить схему подключения. К некоторым регистрам светодиоды подключаются наоборот — катод к выходам.

Ниже приведен код трех программ. Первая, "Hello world", выводит значения байта от 0 до 255. Вторая по одному включает светодиоды. Третья циклически проходит по массиву.

Пониманию кода могут помочь "временная диаграмма сигналов" регистра и "таблица логики". Когда clockPin переглючается с LOW на HIGH, регистр считывает значения с DS пина. По мере считывания данные записываются во внутреннюю память. Когда latchPin переключается с LOW на HIGH, данные "защелкиваются", то есть передаются на выходы регистра, включая светодиоды.

Пример использования каскада сдвиговых регистров

В этом примере подключаются два регистра, доводя количество выходов до 16, при это на Arduino по прежнему задействовано то же количество выходов.

Подключаем второй регистр к питанию и общей земле точно так же, как и первый.

Далее DS вход (пин 14) подключается к Q7′ выходу (пин 9) первого регистра (синий провод). А SH_CP (пин 11) и ST_CP (pin 12) подключаются параллельно регистру к соответствующим входам первого регистра. Желтый и зеленый провод соответственно.

Читайте также:  Kingston hyperx fury ddr4 2400 мгц 4gb

К выходам второго регистра подключаем зеленые светодиоды.

В какой-то момент времени вы неизбежно столкнетесь с проблемой отсутствия достаточного количества контактов на вашем ардуино для удовлетворения потребностей вашего проекта или прототипа. Решение этой проблемы? Сдвиговый регистр, а точнее Arduino сдвиговый регистр 74hc595.

Каждый кто делал проекты на Ардуино, где использовал много светодиодов, понимал, что в значительной степени ограничен контактами Arduino и не может создавать огромные проекты, требующие большого количества контактов. В нашем конкретном проекте 16 светодиодов управляются всего лишь тремя контактами Arduino. Ключевым элементом является arduino сдвиговый регистр 74hc595. Каждый сдвиговый регистр 74HC595 может принимать до 8 светодиодов, а с помощью последовательных цепочек регистров можно увеличить контакты платы от условных 3-х до бесконечного числа.

Как работает регистр сдвига?

Прежде чем мы начнем подключать чип, давайте рассмотрим, как этот процесс работает.

Первое, что нужно прояснить, – это понятие «биты» для тех из вас, кто не знаком с двоичным кодом. Когда мы говорим о «битах», мы имеем в виду одно из чисел, составляющих двоичное значение. В отличие от обычных чисел, мы обычно считаем, что первый бит является самым большим. Итак, если мы берем двоичное значение 10100010, первый бит на самом деле равен 0, а восьмой бит равен 1. Следует также отметить, если это не подразумевалось, каждый бит может быть только 0 или 1.

Чип содержит восемь контактов, которые мы можем использовать для вывода, каждый из которых связан с битом в регистре. В случае сдвигового регистра 74HC595 мы рассматриваем их от QA до QH.

Чтобы записать эти выходы через Arduino, мы должны отправить двоичное значение в регистр сдвига, и из этого числа сдвиговый регистр может определить, какие выходы использовать. Например, если мы отправили двоичное значение 10100010, контакты, выделенные зеленым цветом на изображении выше, будут активными, а выделенные красным цветом будут неактивными.

Это означает, что самый правый бит сопоставляется как QH, а левый бит сопоставляется с QA. Выход считается активным, когда бит, сопоставленный с ним, установлен на 1. Важно помнить об этом, так как иначе вам будет очень сложно узнать, какие контакты вы используете.

Теперь, когда у нас есть основное понимание того, как мы используем смещение битов, чтобы указать, какие контакты использовать, мы можем начать подключать его к нашему Arduino.

Начинаем с 8 светодиодов

Для первой части урока нам понадобятся следующие комплектующие:

  • Arduino Uno
  • Макетная плата
  • Ардуино сдвиговый регистр 74HC595
  • 8 светодиодов
  • 8 резисторов – 220 ом должно хватить
  • Провода/перемычки

Начните с размещения сдвигового регистра на вашем макете, гарантируя, что каждая сторона находится на отдельной стороне макета, как показано ниже.

С надписью, направленной вверх, штифты 1-8 с левой стороны сверху вниз и 16 – 9 с правой стороны сверху вниз, как показано на рисунке ниже.

Собираем схему

Для начала подключим контакты 16 (VCC) и 10 (SRCLR) к выходу 5v на Arduino и соединяем выводы 8 (GND) и 13 (OE) с выводом Gnd на Arduino. Pin 13 (OE) используется для включения выходов, так как это активный низкий контакт, который мы можем подключить непосредственно к земле.

Затем нам нужно соединить три контакта, которыми мы будем управлять сдвиговым регистром:

  • Pin 11 (SRCLK) сдвигового регистра 74HC595 на пин 11 на Arduino – это будет называться «синхронизирующим пином»,
  • Pin 12 (RCLK) сдвигового регистра на пин 12 на Arduino – это будет обозначаться как «пин защелка»,
  • Pin 14 (SER) сдвигового регистра на пин 13 на Arduino – это будет называться «пином данных»,

Все три этих контакта используются для выполнения сдвига битов, упомянутого ранее в этом руководстве. К счастью, ардуино предоставляет вспомогательную функцию специально для регистров сдвига, называемую shiftOut, которая будет обрабатывать почти все для нас, но мы вернемся к этому при просмотре кода.

Теперь нам просто нужно подключить все выходные выводы к нашим светодиодам, гарантируя, что резистор размещается перед светодиодами, чтобы уменьшить ток и что катоды светодиодов направлены на землю.

Чтобы уменьшить нагромождение проводов до минимума, мы поместили резисторы и светодиоды на отдельный макет, однако, вы можете воспользоваться одной макетной платой.

При размещении светодиодов убедитесь, что они подключены по порядку, так что QA подключен к первому светодиоду, а QH подключен к последнему светодиоду, так как иначе наш код не включит светодиоды в правильном порядке. Когда вы закончите, у вас должно получится что-то вроде этого:

Скетч для ардуино

Теперь мы готовы загрузить код. Подключите свой Arduino к компьютеру и загрузите на него следующий эскиз для 74hc595 Arduino:

Читайте также:  God of war герой

Для начала определим в верхней части эскиза следующее:

  • Расположение пинов: синхронизатора, защелки и данных
  • Байт, который будет хранить биты, которые указывают сдвиговому регистру, какой вывод использовать
  • Переменную, которая будет отслеживать, какой светодиод мы должны включить

В методе setup мы просто инициализируем режимы пинов и переменную светодиодов.

В методе loop (цикл) мы очищаем биты в переменной leds в начале каждой итерации, так что все биты устанавливаются в 0, так как мы хотим только включать один светодиод за раз. После этого мы увеличиваем или перезапускаем текущую переменную currentLED, чтобы затем опять включать правильный светодиод.

После этих двух операций мы переходим к более важной части – смещению бит. Сначала мы начинаем с вызова метода bitSet. Мы передаем методу bitSet байт, что хранит биты, и переменную currentLED.

Этот метод позволяет нам установить отдельные биты байта, указав их положение. Например, если мы хотим вручную установить байт в 10010, мы могли бы использовать следующие вызовы, поскольку биты, которые нам нужно установить в 1, являются вторыми справа (это позиция 1, когда мы начинаем в позиции 0) и пятый справа, который находится в положении 4:

Таким образом, каждый раз, когда мы увеличиваем текущую переменную currentLED и передаем ее методу bitSet, мы каждый раз устанавливаем бит слева от предыдущего до 1 и, таким образом сообщаем сдвиговому регистру активировать вывод слева от предыдущего.

После установки бит мы записываем на контакт защелки указание сдвиговому регистру, что собираемся отправить ему данные. Как только мы это сделаем, мы вызываем метод shiftOut, который есть Arduino. Этот метод разработан специально для использования сдвиговых регистров и позволяет просто сдвигать биты за один вызов. Для этого мы передаем данные и синхронизацию в качестве первых двух параметров, затем передаем константу LSBFIRST, которая сообщает методу, что первый бит должен быть наименее значимым, а затем мы проходим через байт, содержащий биты, которые мы действительно хотим перенести в регистр сдвига.

Как только мы закончим смещение битов, мы снова обращаемся на контакт защелки (используя HIGH в этот раз), чтобы указать, что мы отправили все данные. После того, как операция записи будет завершена, загорится соответствующий светодиодный индикатор, а затем задержится на 250 миллисекунд, прежде чем всё повторится.

16 светодиодов

Теперь перейдем к более сложной схеме используем 74hc595 Arduino для 16 светодиодов.

Детали

По большому счету в данном случае количество всех комплектующих увеличиваем вдвое, кроме, конечно, Ардуино Уно:

  • Arduino UNO (x1)
  • 74HC595 сдвиговый регистр (x2)
  • Светодиоды (x16)
  • 220 ом резисторы (x16)
  • Провода/перемычки
  • Две макетные платы (одна с 400 пинами, вторая с 830 пинами)
  • Потенциометр для контроля яркости (по желанию)

Схема соединения

Схема соединения получилась уже больше, чем при 8 светодиодах и одном регистре сдвига 74HC595.

Соберите схему как на рисунке выше и подключите первый регистр сдвига следующим образом:

  • GND (контакт 8) на землю
  • Vcc (контакт 16) – 5В
  • OE (контакт 13) на землю (GND)
  • MR (контакт 10) – 5 В
  • DS (контакт 14) – пин 11 Arduino
  • SH_CP (контакт 11) на контакт Arduino 12
  • ST_CP (контакт 12) к контакту 8 Arduino

Подключите второй регистр сдвига точно так же, но подключите DS (контакт 14) к первому выходу 9 регистра. После этого соедините контакты 1, 2, 3, 4, 5, 6, 7 и 15 из обоих регистров и светодиоды. Это соединение делает все контакты всегда активными и адресными, однако при включении Arduino некоторые из светодиодов могут быть включены. Решение для этого – подключить MR (контакт 10) и OE (контакт 13) к Arduino напрямую, но таким образом вы должны пожертвовать 2 выводами ардуины.

Чтобы добавить больше регистров сдвига, соедините их, как второй регистр. Всегда подключайте контакты MR и OE непосредственно к контакту Arduino и DS к предыдущему регистру. Если вы хотите отрегулировать яркость светодиодов, подключите потенциометр, как показано на рисунке выше, для управления сопротивлением для всех светодиодов. Однако это необязательно, и вы можете обойтись без него.

Скетч для ардуино

Варианты скетчей обычно предназначены для ограниченного числа регистров сдвига, т.к. для этого нет универсальной функции/метода. Данный код ниже переработан так, чтобы вы могли использовать неограниченное количество регистров сдвига:

В коде добавлено несколько эффектов для этих 16 светодиодов. Если вы хотите добавить больше светодиодов, подключите больше регистров сдвига по примеру выше и измените значение numOfRegisters в коде.

Вы также можете использовать этот код не только для светодиодов, если вам просто нужно больше контактов для вашего Arduino, используйте функцию regWrite (int pin, bool state) для записи состояния любого вывода. И нет предела, сколько сдвиговых регистров вы используете, просто измените значение numOfRegisters, а все остальное уже втоматизировано.

Комментировать
566 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector