No Image

Граф в котором нет циклов

СОДЕРЖАНИЕ
723 просмотров
10 марта 2020

В теории графов два типа объектов обычно называются циклами.

Один тип циклов, чаще называющиеся замкнутым обходом, состоит из последовательности вершин, начинающейся и заканчивающейся в той же самой вершине, и каждые две последовательные вершины в последовательности смежны. Другой тип циклов, иногда называемых простыми циклами, — это замкнутые обходы без повторного прохода по ребру или посещения вершины дважды, за исключением начальной и конечной вершин. Простые циклы можно описать набором рёбер, в отличие от замкнутых обходов, в которых наборы рёбер (с возможным повторением) не определяют однозначно порядок вершин. Ориентированный цикл в орграфе — это последовательность вершин, начинающаяся и завершающаяся в той же самой вершине, и в этой последовательности для любых двух последовательных вершин существует дуга из более ранней в более позднюю. Такое же различие между простыми циклами и обходами, как выше, можно определить и для ориентированных графов [1] .

Содержание

Циклы без хорд [ править | править код ]

Цикл без хорд в графе, также называемый дырой или порождённым циклом, — это цикл, в котором никакие две вершины цикла не соединены ребром, разве что это ребро само принадлежит циклу. Антидыра — это дополнение дыры. Графы без хорд можно использовать для описания совершенных графов — согласно строгой теореме о совершенных графах [en] граф является совершенным в том и только в том случае, когда он не содержит дыр и антидыр с нечётным числом вершин больше трёх. Хордальный граф — это специальный тип совершенных графов, в котором нет дыр размером больше трёх.

Обхват графа — это длина наименьшего цикла. Этот цикл обязательно не будет иметь хорд. Клетки — это наименьшие регулярные графы с заданной степенью вершин и обхватом.

Периферийный цикл — это цикл в графе со свойством, что любые два ребра, не принадлежащие циклу, можно соединить путём внутренние точки которого не принадлежат циклу. В графе, не образованном добавлением одного ребра к циклу, периферийный цикл должен быть порождённым циклом.

Пространство циклов [ править | править код ]

Понятие цикл может также относиться к элементам пространства циклов [en] графа. Оно состоит из множеств рёбер, которые имеют чётную степень для каждой вершины. Множества образуют векторное пространство над конечным полем из двух элементов. Используя методы алгебраической топологии его можно обобщить до векторных пространств или модулей над другими кольцами, такими как целые числа, вещественные числа и т. д. По теореме Веблена любой элемент пространства циклов можно получить путём комбинирования простых циклов. База циклов графа — это множество простых циклов, которые образуют базис пространства циклов [2] [3] .

Поиск цикла [ править | править код ]

Неориентированный граф имеет цикл в том и только в том случае, когда поиск в глубину (DFS) находит ребро, которое приводит к уже посещённой вершине (обратная дуга) [4] . Таким же образом, все обратные рёбра, которые алгоритм DFS обнаруживает, являются частями циклов [5] . Для неориентированных графов требуется только время O(n) для нахождения цикла в графе с n вершинами, поскольку максимум n − 1 рёбер могут быть рёбрами дерева.

Ориентированный граф имеет цикл в том и только в том случае, когда DFS находит обратную дугу. Дуги вперёд и поперечные дуги не обязательно говорят о цикле. Многие алгоритмы топологических сортировок также обнаруживают циклы, поскольку они мешают существованию топологического порядка. Если ориентированный граф разделён на компоненты сильной связности, циклы существуют только в компонентах, но не между ними, поскольку циклы сильно связаны [5] .

Читайте также:  Amd ryzen 7 1800x summit ridge

Приложения алгоритмов нахождения циклов включают графы ожидания для нахождения взаимных блокировок в системах с параллельными потоками [6] .

Покрытие графов циклами [ править | править код ]

В работе 1736 года о проблеме семи мостов Кёнигсберга, общепринято считающейся днём рождения теории графов, Леонард Эйлер доказал, что для того, чтобы конечный неориентированный граф имел замкнутый обход всех рёбер ровно по одному разу, необходимо и достаточно, чтобы он был связан и имел чётную степень всех вершин. Соответствующее описание существования замкнутого обхода каждого ребра ровно один раз в ориентированном графе состоит в требовании, чтобы граф был сильно связан и каждая вершина имела одинаковое число входящих и исходящих дуг. В обоих случаях полученный путь известен как эйлеров цикл. Если конечный неориентированный граф имеет чётную степень каждой вершины, независимо от того, связан он или нет, можно найти множество простых циклов, которые покрывают каждое ребро ровно раз — это Теореме Веблена [7] . Если связный граф не удовлетворяет условиям теоремы Эйлера, замкнутый обход минимальной длины, покрывающий все рёбра по меньшей мере один раз может быть найден, тем не менее, за полиномиальное время путём решения задачи об инспекции дорог [en] .

Задача поиска простого цикла, проходящего через каждую вершину ровно один раз, в отличие от покрытия рёбер, намного сложнее. Такие циклы известны как гамильтоновы циклы, и задача определения существуют ли такие циклы NP-полна [8] . Опубликовано множество исследований относительно классов графов, заведомо содержащих гамильтоновы циклы. Примером может служить теорема Оре о том, что гамильтонов цикл может быть найден в графе всегда, если при сложении степеней любой пары несмежных вершин получим по меньшей мере общее число вершин графа [9] .

Гипотеза о двойном покрытии циклами утверждает, что для любого графа без мостов существует мультимножество простых циклов, покрывающих каждое ребро графа в точности два раза. Доказательство гипотезы, либо контрпример пока не найдены [10] .

Классы графов, определяемые циклами [ править | править код ]

Некоторые важные классы графов можно определить или описать их циклами. Это:

  • Двудольный граф — граф без нечётных циклов.
  • Кактус — граф, в котором любая нетривиальная двусвязная компонента является циклом.
  • Граф-цикл — граф, состоящий из единственного цикла.
  • Хордальный граф — граф, в котором нет порождённых циклов длиной больше трёх.
  • Ориентированный ациклический граф — ориентированный граф без циклов.
  • Совершенный граф — граф без порождённых циклов нечётной длины более трёх, либо их дополнений.
  • Псевдолес — граф, в котором каждая связная компонента имеет максимум один цикл.
  • Сильно связный граф — ориентированный граф, в котором любая дуга входит в какой-либо цикл.
  • Граф без треугольников — граф, в котором нет циклов длины три.
Читайте также:  Автоматический ответ на письмо

Wikimedia Foundation . 2010 .

Смотреть что такое "Цикл (теория графов)" в других словарях:

Петля (теория графов) — У этого термина существуют и другие значения, см. Петля. Граф, содержащий петлю при вершине 1 Петля в графе ребро, инци­дентное одной и той же вершин … Википедия

Граф (теория графов) — Неориентированный граф с шестью вершинами и семью рёбрами В математической теории графов и информатике граф это совокупность объектов со связями между ними. Объекты представляются как вершины, или узлы графа, а связи как дуги, или рёбра. Для… … Википедия

Дуга (теория графов) — Здесь собраны определения терминов из теории графов. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф … Википедия

Клетка (теория графов) — У этого термина существуют и другие значения, см. Клетка (значения). Граф Петерсена … Википедия

Цикл — В Викисловаре есть статья «цикл» Цикл (лат. cyclus от др. греч … Википедия

ГРАФОВ ТЕОРИЯ — область дискретной математики, особенностью к рой является геометрич. подход к изучению объектов. Основной объект Г. т. граф и его обобщения. Первые задачи Г. т. были связаны с решением математических развлекательных задач и головоломок (задача о … Математическая энциклопедия

Цикл в орграфе — Здесь собраны определения терминов из теории графов. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф … Википедия

ГРАФОВ ТЕОРИЯ — в химии, область конечной математики, изучающая дискретные структуры, наз. графами; применяется для решения различных теоретич. и прикладных задач. Некоторые основные понятия. Граф совокупность точек (вершин) и совокупность пар этих точек (не… … Химическая энциклопедия

Цикл Гамильтона — Граф додекаэдра с выделенным циклом Гамильтона Гамильтонов граф в теории графов это граф, содержащий гамильтонову цепь или гамильтонов цикл. Гамильтонов путь (или гамильтонова цепь) путь (цепь), содержащий каждую вершину графа ровно один раз.… … Википедия

Цикл Эйлера — Граф Кёнигсбергских мостов. Этот граф не является эйлеровым, поэтому решения не существует. Каждая вершина этого графа имеет чётную степень, поэтому этот граф эйлеров. Обход рёбер в алфавитном порядке даёт эйлеров цикл. Эйлеров путь (эйлерова… … Википедия

Связанные понятия

Перечислены связные 3-регулярные (кубические) простые графы с малым числом вершин.

В теории графов вершиной называется фундаментальная единица, образующая графы — неориентированный граф состоит из множества вершин и множества рёбер (неупорядоченных пар вершин), в то время как ориентированный граф состоит из множества вершин и множества дуг (упорядоченных пар вершин). На рисунках, представляющих граф, вершина обычно обозначается кружком с меткой, ребро — линией, дуга — стрелкой, соединяющей вершины.

В теории графов мультиграфом (или псевдографом) называется граф, в котором разрешается присутствие кратных рёбер (их также называют «параллельными»), то есть рёбер, имеющих те же самые конечные вершины. Таким образом, две вершины могут быть соединены более чем одним ребром (тем самым мультиграфы отличаются от гиперграфов, в которых каждое ребро может соединять любое число вершин, а не в точности две).

Читайте также:  Lcd svc module lg

В теории графов медианным графом называется неориентированный граф, в котором любые три вершины a, b, и c имеют единственную медиану — вершину m(a,b,c), которая принадлежит кратчайшим путям между каждой парой вершин a, b и c.

В теории графов колесом Wn называется граф с n вершинами (n ≥ 4), образованный соединением единственной вершины со всеми вершинами (n-1)-цикла.

В теории графов порождённым путём в неориентированном графе G называется путь, являющийся порождённым подграфом G. Таким образом, это последовательность вершин в G такая, что любые две смежные вершины в последовательности соединены ребром в G, и любые две несмежные вершины последовательности не соединены ребром G. Порождённый путь иногда называют змеёй и задача поиска самого длинного порождённого пути в графах гиперкубов известна как задача о змее в коробке.

В теории графов говорят, что граф G гипогамильтонов, если сам по себе граф не имеет гамильтонова цикла, но любой граф, полученный удалением одной вершины из G, является гамильтоновым.

В теории графов нечётные графы On — это семейство симметричных графов с высоким нечётным обхватом, определённых на некоторых семействах множеств. Они включают и обобщают графы Петерсена.

В теории графов короной с 2n вершинами называется неориентированный граф с двумя наборами вершин ui и vi и рёбрами между ui и vj, если i ≠ j. Можно рассматривать корону как полный двудольный граф, из которого удалено совершенное паросочетание, как двойное покрытие двудольным графом полного графа, или как двудольный граф Кнезера Hn,1, представляющий подмножества из 1 элемента и (n − 1) элементов множества из n элементов с рёбрами между двумя подмножествами, если одно подмножество содержится в другом.

В теории графов циркулянтным графом называется неориентированный граф, имеющий циклическую группу симметрий, которая включает симметрию, переводящую любую вершину в любую другую вершину.

Граф решётки — это граф, рисунок которого, вложенный в некоторое евклидово пространство Rn, образует регулярную мозаику. Это подразумевает, что группа биективных преобразований, переводящая граф в себя, является решёткой в теоретико-групповом смысле.

В теории графов графом гиперкуба Qn называется регулярный граф с 2n вершинами, 2n−1n рёбрами и n рёбрами, сходящимися в одной вершине. Его можно получить как одномерный скелет геометрического гиперкуба. Например, Q3 — это граф, образованный 8 вершинами и 12 рёбрами трёхмерного куба. Граф можно получить другим образом, отталкиваясь от семейства подмножеств множества с n элементами путём использования в качестве вершин все подмножества и соединением двух вершин ребром, если соответствующие множества.

В теории графов графами Пэли (названы в честь Раймонда Пэли) называются плотные неориентированные графы, построенные из членов подходящего конечного поля путём соединения пар элементов, отличающихся на квадратичный вычет. Графы Пэли образуют бесконечное семейство конференсных графов, поскольку тесно связаны с бесконечным семейством симметричных конференсных матриц. Графы Пэли дают возможность применить теоретические средства теории графов в теории квадратичных вычетов и имеют интересные свойства.

Комментировать
723 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector