No Image

Формула вычисления факториала числа

СОДЕРЖАНИЕ
1 просмотров
10 марта 2020

Определение факториала и числа перестановок

Пусть имеется $n$ различных объектов.
Будем переставлять их всеми возможными способами (число и состав объектов остается неизменными, меняется только их порядок). Получившиеся комбинации называются перестановками, а их число равно

$$P_n=n!=1cdot 2cdot 3 cdot . cdot (n-1) cdot n$$

Символ $n!$ называется факториалом и обозначает произведение всех целых чисел от $1$ до $n$. По определению, считают, что $0!=1, 1!=1$. Факториал растет невероятно быстро (недаром он обозначается восклицательным знаком!), например, $$10!=3628800,$$ а $$50!=30414093201713378043612608166064768844377641568960512000000000000.$$ Как найти факториал? Умножать вручную, использовать функцию ФАКТР() в Excel или, если устанете умножать самостоятельно, используйте калькулятор ниже.

Пример всех перестановок из $n=3$ объектов (различных фигур) – на картинке справа. Согласно формуле ниже, их должно быть ровно $P_3=3!=1cdot 2cdot 3 =6$, так и получается (вам не напоминает картинка табло игральных автоматов?:)).

Общая формула, которая позволяет найти число перестановок из $n$ элементов, имеет вид (она же – формула для факториала числа $n$):

$$P_n=n!=1cdot 2cdot 3 cdot . cdot (n-1) cdot n.$$

Найти число перестановок из n элементов

Чтобы вычислить число перестановок $P_n$ онлайн, используйте калькулятор ниже.

Видеоролик о перестановках и Excel

Не все понятно? Посмотрите наш видеообзор для формулы перестановок: как использовать Excel для нахождения факториала и числа перестановок, как решать типовые задачи и использовать онлайн-калькулятор.

Расчетный файл из видео можно бесплатно скачать

Полезные ссылки

Поиск решенных задач

Решебник по комбинаторике и теории вероятностей:

  • Как найти факториал числа
  • Как найти n в арифметической прогрессии
  • Как найти наибольшее из чисел

Чтобы найти факториал числа, необходимо вычислить произведение всех чисел, в промежутке от 1 до заданного числа. Общая формула выглядит таким образом:

n! = 1*2*…*n, где n – любое целое неотрицательное число. Факториал принято обозначать восклицательным знаком.

Читайте также:  Как переконвертировать mp4 в avi

Второе свойство факториала называется рекурсией, а сам факториал – элементарной рекурсивной функцией. Рекурсивные функции часто применяются в теории алгоритмов и в написании компьютерных программ, поскольку многие алгоритмы и функции программирования имеют рекурсивную структуру.

Определить факториал большого числа можно по формуле Стирлинга, которая дает, однако, приближенное равенство, но с маленькой погрешностью. Полная формула выглядит следующим образом:

n! = (n/e)^n*√(2*π*n)*(1 + 1/(12*n) + 1/(288*n^2) + …)
ln (n!) = (n + 1/2)*ln n – n + ln √(2*π),

где e – основание натурального логарифма, число Эйлера, численное значение которого принято приблизительно равным 2,71828…; π – математическая константа, значение которой принято равным 3,14.

Широко распространено использование формулы Стирлинга в виде:

Убывающий факториал записывается следующим образом:
(n)_k = n!/(n – k)!

Возрастающий:
(n)^k = (n + k -1)!/(n – 1)!

Праймориал числа равен произведению простых чисел меньше самого числа и обозначается #, например:
12# = 2*3*5*7*11, очевидно, что 13# = 11# = 12#.

Суперфакториал равен произведению факториалов чисел на интервале от 1 до исходного числа, т.е.:
sf(n) = 1!*2!*3*…(n – 1)!*n!, например, sf(3) = 1!*2!*3! = 1*1*2*1*2*3 = 12.

Факториал натурального числа n – произведение первых по счету, n натуральных чисел от 1 до n включительно, обозначается n!

n! = 1 • 2 • 3 • 4 • 5 • . • n

Факториа́л числа – это число, умноженное на «себя минус один», затем на «себя минус два» и так далее, до единицы.

n! = n • (n – 1) • (n – 2) • . • 1

Для приближённого вычисления факториала и гамма-функции используется формула Стирлинга . Названа в честь Джеймса Стирлинга и Абрахама де Муавра, последний считается автором формулы

Вычисление факториала числа (n!) по формуле в Стирлинга. Этот калькулятор может быть использован для вычисления значений n больше 100.

Расчет факториала по формуле Джеймса Стирлинга

Приближенное значение не ограничено по колличеству n

Читайте также:  Nokia lumia 525 прошивка

Расчет факториала от 0 до 100

Точное значение, ограниченное по колличеству n

Формула Джеймса Стирлинга для расчета факториала

n! ≈ √(2π) × n (n+1/2) × e -n

Примеры значений для разных n:

1! = 1
2! = 2 × 1 = 2
3! = 3 × 2 × 1 = 6
4! = 4 × 3 × 2 × 1 = 24
5! = 5 × 4 × 3 × 2 × 1 = 120

Не стоит забывать

По общепринятой договоренности 0! = 1 (факториал нуля равен единице). Этот факт важен, к примеру, для вычисления биномиальных коэффициентов.

Полезный факт

Факториал числа, функцию от натурального аргумента можно продолжить на все действительные числа с помощью т.н. Гамма-функции (важно отметить, что для этого требуется определенный математический аппарат). В таком случае, мы сможем посчитать факториал любого действительного числа. Например, факториал (или, Гамма-функция, что математически правильнее) числа Пи. π! приблизительно равен 2.28803779534 . Факториал числа Эйлера, другого трансцендентного числа, Γ(e)

1.567468255 (упрощенно, факториал числа e ).

Комментировать
1 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector