No Image

Формула работы с углом

СОДЕРЖАНИЕ
4 просмотров
10 марта 2020

Если сила перемещает тело на некоторое расстояние, то она совершает над телом работу.

Работа W есть произведение силы F на перемещение s.

Единица СИ работы

Работа постоянной силы, формула

Если сила F постоянна во времени и ее направление совпадает с направлением перемещения тела, то работа W находится по формуле.

Здесь:
W — совершенная работа (Джоуль),
F — постоянная сила, совпадающая по направлению с перемещенем (Ньютон),
s — перемещение тела (метр)

Вычислить, найти работу постоянной силы по формуле (4)

Работа постоянной силы, направленной под углом к перемещению, формула

Если сила и перемещение составляют между собой угол α 90º , то перемещение следует умножать на составляющую силы в направлении перемещения (или силу умножать на составляющую перемещения в направлении действия силы). В векторной форме

Здесь:
α — угол между вектором силы и вектором перемещения, º

Вычислить, найти работу постоянной силы направленной под углом к перемещению по формуле (4)

Работа переменной силы, направленной под углом к перемещению, формула

Если сила не постоянна по величине и является функцией перемещения F = F(s), и направлена под углом α к перемещению, то работа есть интеграл от силы по перемещению.

Площадь под кривой на графике зависимости F от s равна работе, произведенной данной силой

Работа
A , W <displaystyle A,W>
Размерность L 2 MT −2
Единицы измерения
СИ Дж
СГС эрг
Примечания
скалярная величина
Механическая работа
A = F ⋅ S = F ⋅ S ⋅ cos ⁡ φ <displaystyle A=<mathbf >cdot <mathbf >=Fcdot Scdot cos varphi >
Ключевые статьи
См. также: Портал:Физика

Мeханическая работа — это физическая величина — скалярная количественная мера действия силы (равнодействующей сил) на тело или сил на систему тел. Зависит от численной величины и направления силы (сил) и от перемещения тела (системы тел) [1] .

Содержание

Используемые обозначения [ править | править код ]

Работа обычно обозначается буквой A (от нем. Arbeit — работа, труд) или буквой W (от англ. work — работа, труд).

Определение [ править | править код ]

Работа силы, приложенной к материальной точке [ править | править код ]

Суммарная работа по перемещению одной материальной точки, совершаемая несколькими силами, приложенными к этой точке, определяется как работа равнодействующей этих сил (их векторной суммой). Поэтому дальше будем говорить об одной силе, приложенной к материальной точке.

При прямолинейном движении материальной точки и постоянном значении приложенной к ней силы, работа (этой силы) равна произведению проекции вектора силы на направление движения и длины вектора перемещения, совершённого точкой:

A = F s s = F s c o s ( F , s ) = F → ⋅ s → <displaystyle A=F_s=Fs mathrm (F,s)=<vec >cdot <vec >>

Здесь точкой обозначено скалярное произведение, s → <displaystyle <vec >> — вектор перемещения; подразумевается, что действующая сила F → <displaystyle <vec >> постоянна в течение времени, за которое вычисляется работа.

В общем случае, когда сила не постоянна, а движение не прямолинейно, работа вычисляется как криволинейный интеграл второго рода по траектории точки [2] :

A = ∫ F → ⋅ d s → . <displaystyle A=int <vec >cdot <vec >.>

(подразумевается суммирование по кривой, которая является пределом ломаной, составленной из последовательных перемещений d s → , <displaystyle <vec >,> если вначале считать их конечными, а потом устремить длину каждого к нулю).

Если существует зависимость силы от координат [3] , интеграл определяется [4] следующим образом:

A = ∫ r → 0 r → 1 F → ( r → ) ⋅ d r → <displaystyle A=int limits _<<vec >_<0>>^<<vec >_<1>><vec >left(<vec >
ight)cdot <vec >> ,

где r → 0 <displaystyle <vec >_<0>> и r → 1 <displaystyle <vec >_<1>> — радиус-векторы начального и конечного положения тела соответственно.

  • Следствие. Если направление приложенной силы ортогонально перемещению тела или перемещение равно нулю, то работа (этой силы) равна нулю.

Работа сил, приложенных к системе материальных точек [ править | править код ]

Работа сил по перемещению системы материальных точек определяется как сумма работ этих сил по перемещению каждой точки (работы, совершённые над каждой точкой системы, суммируются в работу этих сил над системой).

Даже если тело не является системой дискретных точек, его можно разбить (мысленно) на множество бесконечно малых элементов (кусочков), каждый из которых можно считать материальной точкой, и вычислить работу в соответствии с определением выше. В этом случае дискретная сумма заменяется на интеграл.

  • Эти определения могут быть использованы как для вычисления работы конкретной силы или класса сил, так и для вычисления полной работы, совершаемой всеми силами, действующими на систему.
Читайте также:  Apple ipad 2018 характеристики

Кинетическая энергия [ править | править код ]

Кинетическая энергия вводится в механике в прямой связи с понятием работы.

Схема рассуждений такова: 1) попробуем записать работу, совершаемую всеми силами, действующими на материальную точку и, пользуясь вторым законом Ньютона (позволяющим выразить силу через ускорение), попытаемся выразить ответ только через кинематические величины, 2) убедившись, что это удалось, и что этот ответ зависит только от начального и конечного состояния движения, введём новую физическую величину, через которую эта работа будет просто выражаться (это и будет кинетическая энергия).

Если A t o t a l <displaystyle A_> — полная работа, совершённая над частицей, определяемая как сумма работ, совершенных приложенными к частице силами, то она выражается как:

A t o t a l = Δ ( m v 2 2 ) = Δ E k , <displaystyle A_=Delta left(<frac <2>><2>>
ight)=Delta E_,>

где E k <displaystyle E_> называется кинетической энергией. Для материальной точки кинетическая энергия определяется как половина произведения массы этой точки на квадрат её скорости и выражается как [5] :

E k = 1 2 m v 2 . <displaystyle E_=<frac <1><2>>mv^<2>.>

Для сложных объектов, состоящих из множества частиц, кинетическая энергия тела равна сумме кинетических энергий частиц.

Потенциальная энергия [ править | править код ]

Сила называется потенциальной, если существует скалярная функция координат, известная как потенциальная энергия и обозначаемая E p <displaystyle E_

> , такая, что

F → = − ∇ E p . <displaystyle <vec >=-
abla E_

.>

Если все силы, действующие на частицу, консервативны, и E p <displaystyle E_

> является полной потенциальной энергией, полученной суммированием потенциальных энергий, соответствующих каждой силе, тогда:

F → ⋅ Δ s → = − ∇ → E p ⋅ Δ s → = − Δ E p ⇒ − Δ E p = Δ E k ⇒ Δ ( E k + E p ) = 0 <displaystyle <vec >cdot Delta <vec >=-<vec <
abla >>E_

cdot Delta <vec >=-Delta E_

Rightarrow -Delta E_

=Delta E_Rightarrow Delta (E_+E_

)=0> .

Этот результат известен как закон сохранения механической энергии и утверждает, что полная механическая энергия в замкнутой системе, в которой действуют консервативные силы,

∑ E = E k + E p <displaystyle sum E=E_+E_

>

является постоянной во времени. Этот закон широко используется при решении задач классической механики.

Работа в термодинамике [ править | править код ]

В термодинамике работа, совершённая газом при расширении [6] , рассчитывается как интеграл давления по объёму:

A 1 → 2 = ∫ V 1 V 2 P d V . <displaystyle A_<1
ightarrow 2>=int limits _<1>>^<2>>PdV.>

Работа, совершённая над газом, совпадает с этим выражением по абсолютной величине, но противоположна по знаку.

  • Естественное обобщение этой формулы применимо не только к процессам, где давление есть однозначная функция объёма, но и к любому процессу (изображаемому любой кривой в плоскости PV), в частности, к циклическим процессам.
  • В принципе, формула применима не только к газу, но и к чему угодно, способному оказывать давление (надо только чтобы давление в сосуде было всюду одинаковым, что неявно подразумевается в формуле).

Эта формула прямо связана с механической работой. Действительно, попробуем написать механическую работу при расширении сосуда, учитывая, что сила давления газа будет направлена перпендикулярно каждой элементарной площадке, равна произведению давления P на площадь dS площадки, и тогда работа, совершаемая газом для смещения h одной такой элементарной площадки будет

d A = P d S h . <displaystyle dA=PdSh.>

Видно, что это и есть произведение давления на приращение объёма вблизи данной элементарной площадкой. А просуммировав по всем dS, получим конечный результат, где будет уже полное приращение объёма, как и в главной формуле раздела.

Работа силы в теоретической механике [ править | править код ]

Рассмотрим несколько детальнее, чем это было сделано выше, построение определения энергии как риманова интеграла.

Пусть материальная точка M <displaystyle M> движется по непрерывно дифференцируемой кривой G = < r = r ( s ) ><displaystyle G=> , где s — переменная длина дуги, 0 ≤ s ≤ S <displaystyle 0leq sleq S> , и на неё действует сила F ( s ) <displaystyle F(s)> , направленная по касательной к траектории в направлении движения (если сила не направлена по касательной, то будем понимать под F ( s ) <displaystyle F(s)> проекцию силы на положительную касательную кривой, таким образом сведя и этот случай к рассматриваемому далее). Величина F ( ξ i ) △ s i , △ s i = s i − s i − 1 , i = 1 , 2 , . . . , i τ <displaystyle F(xi _) riangle s_, riangle s_=s_-s_,i=1,2. i_< au >> , называется элементарной работой силы F <displaystyle F> на участке G i <displaystyle G_> и принимается за приближённое значение работы, которую производит сила F <displaystyle F> , воздействующая на материальную точку, когда последняя проходит кривую G i <displaystyle G_> . Сумма всех элементарных работ ∑ i = 1 i τ F ( ξ i ) △ s i <displaystyle sum _^>F(xi _) riangle s_> является интегральной суммой Римана функции F ( s ) <displaystyle F(s)> .

Читайте также:  Wd elements не определяется windows xp

В соответствии с определением интеграла Римана, можем дать определение работе:

Предел, к которому стремится сумма ∑ i = 1 i τ F ( ξ i ) △ s i <displaystyle sum _^>F(xi _) riangle s_> всех элементарных работ, когда мелкость | τ | <displaystyle | au |> разбиения τ <displaystyle au > стремится к нулю, называется работой силы F <displaystyle F> вдоль кривой G <displaystyle G> .

Таким образом, если обозначить эту работу буквой W <displaystyle W> , то, в силу данного определения,

W = lim | τ | → 0 ∑ i = 1 i τ F ( ξ i ) △ s i <displaystyle W=lim _<| au |
ightarrow 0>sum _^>F(xi _) riangle s_> ,

W = ∫ 0 s F ( s ) d s <displaystyle W=int limits _<0>^F(s)ds> (1).

Если положение точки на траектории её движения описывается с помощью какого-либо другого параметра t <displaystyle t> (например, времени) и если величина пройденного пути s = s ( t ) <displaystyle s=s(t)> , a ≤ t ≤ b <displaystyle aleq tleq b> является непрерывно дифференцируемой функцией, то из формулы (1) получим

W = ∫ a b F [ s ( t ) ] s ′ ( t ) d t . <displaystyle W=int limits _^F[s(t)]s'(t)dt.>

Размерность и единицы [ править | править код ]

1 Дж = 1 кг·м²/с² = 1 Н·м 1 эрг = 1 г·см²/с² = 1 дин·см 1 эрг = 10 −7 Дж

Механическая работа – это одна из основных скалярных величин в физике. В рамках стандартной школьной программы она изучается в седьмом классе в разделе механики. Механическая работа – один из способов изменения внутренней энергии тела или субстанции (например, газа или жидкости) наряду с такими формами теплопередачи, как теплопроводность, конвекция и излучение, которые изучаются в разделе тепловых явлений.

Что такое работа в физике – определение и формула

Механическая работа – это количество энергии, которое нужно затратить для того, чтобы тело начало равномерно замедляющееся движение и прошло некоторую дистанцию.

В физике механической работой называется произведение силы, которая действует на некоторое тело, на расстояние, которое оно проходит под ее воздействием:

В более сложных случаях в формуле появляется и третья величина – косинус угла, под которым друг к другу расположены векторы движения и приложенной силы. Найти ее значение можно по формуле:

В чем измеряется работа

Физические единицы, в которых выражается механическая работа, – Джоули.

Существуют разные способы для ее практического измерения, которые зависят от типа произведенного движения. При этом в формулу работы подставляют значение силы в Ньютонах и расстояния в метрах. Угол между векторами измеряют в математических единицах – градусах.

Работа силы трения

При условиях, существующих на Земле, на любое движущееся тело оказывает воздействие сила трения, замедляющая его движение. Чаще всего это трение поверхности, по которой движется объект. Это очевидно из того факта, что при воздействии постоянной силы на тело его скорость окажется переменной.

Следовательно, должна быть и другая сила, противодействующая ей – и это сила трения. Если система координат выбрана по направлению движения тела, то ее числовое значение будет отрицательным.

Положительная и отрицательная работа

Числовое значение работы, которую совершает сила, может становиться отрицательным в случае если ее вектор противоположен вектору скорости.

Иными словами, сила может не только придавать телу скорость для совершения движения, но и препятствовать уже совершаемому перемещению. В таком случае она будет называться противодействующей.

Полезная или затраченная работа

У тела, совершающего одно и то же действие, есть два значения работы. Первая из них, полезная, вычисляется по обычной формуле.

Вторая, затраченная, по своему понятию не имеет общей формулы для вычисления и измеряется практически. Эта разница между совершенной в реальности работой и той, которая должна была быть совершена в теории, равна коэффициенту полезного действия – КПД. Он вычисляется так:

Читайте также:  Матрасы магнифлекс отзывы покупателей

КПД = А полезная / А затраченная,

и выражается в процентах. КПД всегда меньше 100.

Мощность

Среднее количество работы, совершаемой за единицу времени (секунду), характеризует такую величину, как мощность. Формула для ее вычисления выглядит так:

В качестве работы можно подставить люблю известную формулу для ее вычисления в зависимости от ситуации. Ответ будет выражен в Ваттах.

Однако при равномерном движении можно использовать и другую формулу:

Подставив вместо обычной скорости мгновенную, можно получить значение мгновенной мощности.

Примеры решения задач

Рассмотрим несколько простых задач на нахождение механической работы.

Задача 1

Какую работу совершает подъемный механизм, поднимающий десятикилограммовый блок на высоту 50 метров.

Для того, чтобы поднять тело, необходимо преодолеть действующую на него силу тяжести. То есть F, с которой поднимают блок, равна той, с которой он притягивается к земле. Так как последняя равна m * g, то для нахождения конечного результата понадобится только одна измененная версия стандартной формулы, упомянутой выше: A = S * m * g.

При помощи простой математики найдем числовой ответ:

A = 50 м * 10 кг * 10 Н/кг;

Впрочем, не всегда речь идет о силе тяжести.

Задача 2

Какая работа совершается силой упругости, когда пружина с жесткостью 10 Н/м, сжатая на 20 см, возвращается в исходное состояние? Система замкнута, нет никаких внешних сил, воздействующих на пружину.

Для начала нужно найти саму F упругости, которая совершает работу. Ее формула – F = x * |k|, где x – это длина, на которую сжимается или растягивается пружина, а k – коэффициент ее жесткости. Перемещение пружины равно ее деформации, и следовательно, конечная формула в этом случае будет выглядеть так: A = S * x * k = x * x * k = x^2 * k.

Далее при помощи элементарных вычислений рассчитаем ответ:

A = (0,2 м)^2 * 10 Н/м = 0,04 * 10 = 0,4 Дж.

Но во всех задачах по данной теме траектория движения тела прямая.

Задача 3

Рассчитайте, какова сила, действующая на колесо, если на то, чтобы совершить полный оборот, ему требуется 10 кДж. Диаметр диска равен 40 см, а толщина шины – 10 см.

В этом случае нам нужно найти не А, а F, но сделать это можно при помощи все той же формулы. Возьмем точку на поверхности колеса. Предположим, что при вращательном движении ее вектор будет противоположен вектору приложения силы, а значит косинусом в формуле вновь можно пренебречь. Таким образом, за один оборот колеса точка пройдет расстояние, равное длине окружности, которую можно вычислить как 2πr или πd. Диаметр окружности можно найти из предоставленных данных: он равен сумме диаметра диска и удвоенной толщины шины, то есть 40 см + 2 * 10 см = 40 см + 20 см = 60 см = 0,6 м.

Теперь, когда мы можем вычислить расстояние, у нас есть все данные для того, чтобы приступить к нахождению силы.

Формула работы для этого случая будет такой: A = F * π * d, то силу, соответственно, можно будет выразить как F = A / (π * d).

F = 10 кДж / (3,14 * 0,6 м) = 10000 Дж / 1,884 м =

В завершение решим самый сложный вариант задачи, включающий в себя все, о чем говорилось выше.

Задача 4

Автомобиль Фольксваген весом 2500 кг заезжает на гору. Какова должна быть его минимальная скорость, чтобы удержаться на горе, если сила тяги равна 10 кН, время работы двигателя – 10 с, КПД – 30%, а угол наклона горы – 60 градусов. Трением и прочими силами пренебречь.

На первый взгляд задача может показаться сложной, но для ее решения используются только простые известные формулы.

Запишем условие в более наглядном виде.

угол A = 150 0 (60+90, т. к. сила тяжести приложена под углом 90 к горизонтали);

Шаг 1. По условию A1 (силы тяжести) = А2 (тяги).

То есть mg = P * t / КПД.

Шаг 2. P = F * V * cosA.

Шаг 3. Общая формула: mg = F * V * cosA * t / КПД.

V = (m * g * КПД) / (F * t * cosA).

V = (2500 кг * 10 Н/кг * 30%) / (10000 H * 10 с * cos150);

V = (2500 кг * 10 Н/кг * 0,3) / (10000 H * 10 с * cos60);

Комментировать
4 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector