No Image

Дробные выражения с корнями

СОДЕРЖАНИЕ
1 126 просмотров
10 марта 2020

Статья раскрывает смысл иррациональных выражений и преобразования с ними. Рассмотрим само понятие иррациональных выражений, преобразование и характерные выражения.

Что такое иррациональные выражения?

При знакомстве с корнем в школе мы изучаем понятие иррациональных выражений. Такие выражения тесно связаны с корнями.

Иррациональные выражения – это выражения, которые имеют корень. То есть это выражения, имеющие радикалы.

Основываясь на данном определении, мы имеем, что x – 1 , 8 3 · 3 6 – 1 2 · 3 , 7 – 4 · 3 · ( 2 + 3 ) , 4 · a 2 d 5 : d 9 2 · a 3 5 – это все выражения иррационального типа.

При рассмотрении выражения x · x – 7 · x + 7 x + 3 2 · x – 8 3 получаем, что выражение является рациональным. К рациональным выражениям относят многочлены и алгебраические дроби. Иррациональные включают в себя работу с логарифмическими выражениями или подкоренными выражениями.

Основные виды преобразований иррациональных выражений

При вычислении таких выражений необходимо обратить внимание на ОДЗ. Часто они требуют дополнительных преобразований в виде раскрытия скобок, приведения подобных членов, группировок и так далее. Основа таких преобразований – действия с числами. Преобразования иррациональных выражений придерживаются строгого порядка.

Преобразовать выражение 9 + 3 3 – 2 + 4 · 3 3 + 1 – 2 · 3 3 .

Необходимо выполнить замену числа 9 на выражение, содержащее корень. Тогда получаем, что

81 + 3 3 – 2 + 4 · 3 3 + 1 – 2 · 3 3 = = 9 + 3 3 – 2 + 4 · 3 3 + 1 – 2 · 3 3

Полученное выражение имеет подобные слагаемые, поэтому выполним приведение и группировку. Получим

9 + 3 3 – 2 + 4 · 3 3 + 1 – 2 · 3 3 = = 9 – 2 + 1 + 3 3 + 4 · 3 3 – 2 · 3 3 = = 8 + 3 · 3 3
Ответ: 9 + 3 3 – 2 + 4 · 3 3 + 1 – 2 · 3 3 = 8 + 3 · 3 3

Представить выражение x + 3 5 2 – 2 · x + 3 5 + 1 – 9 в виде произведения двух иррациональных с использованием формул сокращенного умножения.

x + 3 5 2 – 2 · x + 3 5 + 1 – 9 = = x + 3 5 – 1 2 – 9

Представляем 9 в виде 3 2 , причем применим формулу разности квадратов:

x + 3 5 – 1 2 – 9 = x + 3 5 – 1 2 – 3 2 = = x + 3 5 – 1 – 3 · x + 3 5 – 1 + 3 = = x + 3 5 – 4 · x + 3 5 + 2

Результат тождественных преобразований привел к произведению двух рациональных выражений, которые необходимо было найти.

x + 3 5 2 – 2 · x + 3 5 + 1 – 9 = = x + 3 5 – 4 · x + 3 5 + 2

Можно выполнять ряд других преобразований, которые относятся к иррациональным выражениям.

Преобразование подкоренного выражения

Важно то, что выражение, находящееся под знаком корня, можно заменить на тождественно равное ему. Данное утверждение дает возможность работать с подкоренным выражением. К примеру, 1 + 6 можно заменить на 7 или 2 · a 5 4 – 6 на 2 · a 4 · a 4 – 6 . Они тождественно равные, поэтому замена имеет смысл.

Когда не существует а 1 , отличное от a , где справедливо неравенство вида a n = a 1 n , тогда такое равенство возможно только при а = а 1 . Значения таких выражений равны с любыми значениями переменных.

Использование свойств корней

Свойства корней применяют для упрощения выражений. Чтобы применить свойство a · b = a · b , где a ≥ 0 , b ≥ 0 , тогда из иррационального вида 1 + 3 · 12 можно стать тождественно равным 1 + 3 · 12 . Свойство . . . a n k n 2 n 1 = a n 1 · n 2 · , . . . , · n k , где a ≥ 0 говорит о том, что x 2 + 4 4 3 можно записать в форме x 2 + 4 24 .

Имеются некоторые нюансы при преобразовании подкоренных выражений. Если имеется выражение, то – 7 – 81 4 = – 7 4 – 81 4 записать не можем, так как формула a b n = a n b n служит только для неотрицательного a и положительного b . Если свойство применить правильно, тогда получится выражение вида 7 4 81 4 .

Для правильного преобразования используют преобразования иррациональных выражений с использованием свойств корней.

Читайте также:  Диаграммах рисунки 1 2 1

Внесение множителя под знак корня

Внести под знак корня – значит заменить выражение B · C n , а B и C являются некоторыми числами или выражениями, где n – натуральное число, которое больше 1 , равным выражением, которое имеет вид B n · C n или – B n · C n .

Если упростить выражение вида 2 · x 3 , то после внесения под корень, получаем, что 2 3 · x 3 . Такие преобразования возможны только после подробного изучения правил внесения множителя под знак корня.

Вынесение множителя из-под знака корня

Если имеется выражение вида B n · C n , тогда его приводят к виду B · C n , где имеется нечетные n , которые принимают вид B · C n с четными n , В и C являются некоторыми числами и выражениями.

То есть, если брать иррациональное выражение вида 2 3 · x 3 , вынести множитель из-под корня, тогда получим выражение 2 · x 3 . Или x + 1 2 · 7 даст в результате выражение вида x + 1 · 7 , которое имеет еще одну запись в виде x + 1 · 7 .

Вынесение множителя из-под корня необходимо для упрощения выражения и его быстрого преобразования.

Преобразование дробей, содержащих корни

Иррациональное выражение может быть как натуральным числом, так и в виде дроби. Для преобразования дробных выражений большое внимание обращают на его знаменатель. Если взять дробь вида ( 2 + 3 ) · x 4 x 2 + 5 3 , то числитель примет вид 5 · x 4 , а, использовав свойства корней, получим, что знаменатель станет x 2 + 5 6 . Исходную дробь можно будет записать в виде 5 · x 4 x 2 + 5 6 .

Необходимо обратить внимание на то, что необходимо изменять знак только числителя или только знаменателя. Получим, что

– x + 2 · x – 3 · x 2 + 7 4 = x + 2 · x – ( – 3 · x 2 + 7 4 ) = x + 2 · x 3 · x 2 – 7 4

Сокращение дроби чаще всего используется при упрощении. Получаем, что

3 · x + 4 3 – 1 · x x + 4 3 – 1 3 сокращаем на x + 4 3 – 1 . Получим выражение 3 · x x + 4 3 – 1 2 .

Перед сокращением необходимо выполнять преобразования, которые упрощают выражение и дают возможность разложить на множители сложное выражение. Чаще всего применяют формулы сокращенного умножения.

Если взять дробь вида 2 · x – y x + y , то необходимо вводить новые переменные u = x и v = x , тогда заданное выражение поменяет вид и станет 2 · u 2 – v 2 u + v . Числитель следует разложить на многочлены по формуле, тогда получим, что

2 · u 2 – v 2 u + v = 2 · ( u – v ) · u + v u + v = 2 · u – v . После выполнения обратной замены придем к виду 2 · x – y , которое равно исходному.

Допускается приведение к новому знаменателю, тогда необходимо числитель умножать на дополнительный множитель. Если взять дробь вида x 3 – 1 0 , 5 · x , тогда приведем к знаменателю x . для этого нужно умножить числитель и знаменатель на выражение 2 · x , тогда получаем выражение x 3 – 1 0 , 5 · x = 2 · x · x 3 – 1 0 , 5 · x · 2 · x = 2 · x · x 3 – 1 x .

Сокращение дробей или приведение подобных необходимо только на ОДЗ указанной дроби. При умножении числителя и знаменателя на иррациональное выражение получаем, что мы избавляемся от иррациональности в знаменателе.

Избавление от иррациональности в знаменателе

Когда выражение избавляется от корня в знаменателе путем преобразования, то это называется избавлением от иррациональности. Рассмотрим на примере дроби вида x 3 3 . После избавления от иррациональности получаем новую дробь вида 9 3 · x 3 .

Читайте также:  Безопасное напряжение в сети

Переход от корней к степеням

Переходы от корней к степеням необходимы для быстрого преобразования иррациональных выражений. Если рассмотреть равенство a m n = a m n , то видно, что его использование возможно, когда a является положительным числом, m –целым числом, а n – натуральным. Если рассматривать выражение 5 – 2 3 , то иначе имеем право записать его как 5 – 2 3 . Эти выражения равнозначны.

Когда под корнем имеется отрицательное число или число с переменными, тогда формула a m n = a m n не всегда применима. Если нужно заменить такие корни ( – 8 ) 3 5 и ( – 16 ) 2 4 степенями, тогда получаем, что – 8 3 5 и – 16 2 4 по формуле a m n = a m n не работаем с отрицательными а. для того, чтобы подробно разобрать тему подкоренных выражений и их упрощений, необходимо изучать статью о переходе от корней к степеням и обратно. Следует помнить о том, что формула a m n = a m n применима не для всех выражений такого вида. Избавление от иррациональности способствует дальнейшему упрощению выражения, его преобразованию и решению.

Подкоренное выражение – это алгебраическое выражение, которое находится под знаком корня (квадратного, кубического или более высокого порядка). Иногда значения разных выражений могут быть одинаковыми, например, 1/(√2 – 1) = √2 + 1. Упрощение подкоренного выражения призвано привести его к некоторой канонической форме записи. Если два выражения, которые записаны в канонической форме, по-прежнему различны, их значения не равны. В математике считается, что каноническая форма записи подкоренных выражений (а также выражений с корнями) соответствует следующим правилам:

  • Если можно, избавьтесь от дроби под знаком корня
  • Избавьтесь от выражения с дробным показателем
  • Если можно, избавьтесь от корней в знаменателе
  • Избавьтесь от операции умножения корня на корень
  • Под знаком корня нужно оставить только те члены, из которых нельзя извлечь целочисленный корень

Эти правила можно применить к выполнению тестовых заданий. Например, если вы решили задачу, но результат не совпадает ни с одним из приведенных ответов, запишите результат в канонической форме. Имейте в виду, что ответы к тестовым заданиям даются в канонической форме, поэтому если записать результат в той же форме, вы с легкостью определите правильный ответ. Если в задаче требуется «упростить ответ» или «упростить подкоренные выражения», необходимо записать результат в канонической форме. Более того, каноническая форма упрощает решение уравнений, хотя с некоторыми уравнениями легче справиться, если на время забыть о канонической форме записи.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Повторение свойств квадратных корней

Вкратце повторим теорию и напомним основные свойства квадратных корней.

Свойства квадратных корней:

1. 2. ;

3. ;

4. .

Примеры на упрощение выражений с корнями

Перейдем к примерам использования этих свойств.

Пример 1. Упростить выражение .

Читайте также:  Твитнуть что это значит

Решение. Для упрощения число 120 необходимо разложить на простые множители:

. Квадрат суммы раскроем по соответствующей формуле:

.

Пример 2. Упростить выражение .

Решение. Учтем, что данное выражение имеет смысл не при всех возможных значениях переменной, т. к. в данном выражении присутствуют квадратные корни и дроби, что приводит к «сужению» области допустимых значений. ОДЗ: Ответ. Пример 3. Упростить выражение .

Решение. Видно, что вторая скобка числителя имеет неудобный вид и нуждается в упрощении, попробуем разложить ее на множители с помощью метода группировки.

. Для возможности выносить общий множитель мы упростили корни путем их разложения на множители. Подставим полученное выражение в исходную дробь:

. После сокращения дроби применяем формулу разности квадратов.

Пример на избавление от иррациональности

Пример 4. Освободиться от иррациональности (корней) в знаменателе: а) .

б) выполним аналогичные действия:

.

Ответ.Пример на доказательство и на выделение полного квадрата в сложном радикале

Пример 5. Докажите равенство .

Доказательство. Воспользуемся определением квадратного корня, из которого следует, что квадрат правого выражения должен быть равен подкоренному выражению:

. Раскроем скобки по формуле квадрата суммы:

, получили верное равенство.

Пример 6. Упростить выражение .

Решение. Указанное выражение принято называть сложным радикалом (корень под корнем). В данном примере необходимо догадаться выделить полный квадрат из подкоренного выражения. Для этого заметим, что из двух слагаемых . Подставим это выражение под корень:

Ответ..

На этом занятии мы заканчиваем тему «Функция . Свойства квадратного корня», а на следующем уроке начинаем новую тему «Действительные числа».

Список литературы

1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-портал xenoid.ru (Источник).

2. Математическая школа (Источник).

3. Интернет-портал XReferat.Ru (Источник).

Домашнее задание

1. №357, 360, 372, 373, 382. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Избавьтесь от иррациональности в знаменателе: а) 3. Упростите выражение: а) 4. Докажите тождество .

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

“>

Комментировать
1 126 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector