No Image

Чтобы умножить два отрицательных числа

СОДЕРЖАНИЕ
0 просмотров
10 марта 2020

В этой статье мы разберемся с процессом умножения отрицательных чисел. Сначала сформулируем правило умножения отрицательных чисел и обоснуем его. После этого перейдем к решению характерных примеров.

Навигация по странице.

Правило умножения отрицательных чисел

Сразу озвучим правило умножения отрицательных чисел: чтобы умножить два отрицательных числа, надо перемножить их модули.

Запишем это правило с помощью букв: для любых отрицательных действительных чисел −a и −b (при этом числа a и b – положительные) справедливо равенство (−a)·(−b)=a·b .

Докажем правило умножения отрицательных чисел, то есть, докажем равенство (−a)·(−b)=a·b .

В статье умножение чисел с разными знаками мы обосновали справедливость равенства a·(−b)=−a·b , аналогично показывается, что (−a)·b=−a·b . Эти результаты и свойства противоположных чисел позволяют записать следующие равенства (−a)·(−b)=−(a·(−b))=−(−(a·b))=a·b . Это доказывает правило умножения отрицательных чисел.

Из приведенного правила умножения понятно, что произведение двух отрицательных чисел является положительным числом. Действительно, так как модуль любого числа является положительным, то произведение модулей также является положительным числом.

В заключение этого пункта отметим, что рассмотренное правило можно использовать для умножения действительных чисел, рациональных чисел и целых чисел.

Примеры умножения отрицательных чисел

Пришло время разобрать примеры умножения двух отрицательных чисел, при решении будем пользоваться правилом, полученном в предыдущем пункте.

Перемножьте два отрицательных числа −3 и −5 .

Модули умножаемых чисел равны 3 и 5 соответственно. Произведение этих чисел равно 15 (при необходимости смотрите умножение натуральных чисел), таким образом, произведение исходных чисел равно 15 .

Весь процесс умножения исходных отрицательных чисел кратко записывается так: (−3)·(−5)= 3·5=15 .

Умножение отрицательных рациональных чисел с помощью разобранного правила можно свести к умножению обыкновенных дробей, умножению смешанных чисел или умножению десятичных дробей.

Вычислите произведение (−0,125)·(−6) .

По правилу умножения отрицательных чисел имеем (−0,125)·(−6)=0,125·6 . Осталось лишь закончить вычисления, выполним умножение десятичной дроби на натуральное число столбиком:

Читайте также:  Игра darkest dungeon прохождение

Наконец, заметим, что если один или оба множителя являются иррациональными числами, заданными в виде корней, логарифмов, степеней и т.п., то их произведение часто приходится записывать как числовое выражение. Значение полученного выражения вычисляется лишь при необходимости.

Проведите умножение отрицательного числа на отрицательное число .

Найдем сначала модули умножаемых чисел: и (смотрите свойства логарифма). Тогда по правилу умножения отрицательных чисел имеем . Полученное произведение и является ответом.

.

Продолжить изучение темы можно, обратившись к разделу умножение действительных чисел.

Используя понятие модуля числа, сформулируем правила умножения положительных и отрицательных чисел.

Умножение чисел с одинаковыми знаками

Первый случай, который может вам встретиться — это умножение чисел с одинаковыми знаками.

Чтобы умножить два числа с одинаковыми знаками надо:

  • перемножить модули чисел;
  • перед полученным произведением поставить знак « + » (при записи ответа знак «плюс» перед первым числом слева можно опускать).

Примеры умножения отрицательных и положительных чисел.

Умножение чисел с разными знаками

Второй возможный случай — это умножение чисел с разными знаками.

Чтобы умножить два числа с разными знаками, надо:

  • перемножить модули чисел;
  • перед полученным произведением поставить знак « − ».

Примеры умножения отрицательных и положительных чисел.

Правила знаков для умножения

Запомнить правило знаков для умножения очень просто. Данное правило совпадает с правилом раскрытия скобок.

Минус на минус даёт плюс,

Плюс на минус даёт минус.

В «длинных» примерах, в которых есть только действие умножение, знак произведения можно определять по количеству отрицательных множителей.

При чётном числе отрицательных множителей результат будет положительным, а при нечётном количестве — отрицательным.

В примере пять отрицательных множителей. Значит, знак результата будет «минус».

Теперь вычислим произведение модулей, не обращая внимание на знаки.

Читайте также:  Проверить сайт на надежность бесплатно

Конечный результат умножения исходных чисел будет:

Умножение на ноль и единицу

Если среди множителей есть число ноль или положительная единица, то умножение выполняется по известным правилам.

Особую роль при умножении рациональных чисел играет отрицательная единица « −1 ».

При умножении на « −1 » число меняется на противоположное.

В буквенном выражении это свойство можно записать:

При совместном выполнении сложения, вычитания и умножения рациональных чисел сохраняется порядок действий, установленный для положительных чисел и нуля.

Пример умножения отрицательных и положительных чисел.

В данной статье сформулируем правило умножения отрицательных чисел и дадим ему объяснение. Будет подробно рассмотрен процесс умножения отрицательных чисел. На примерах показаны все возможные случаи.

Умножение отрицательных чисел

Правило умножения отрицательных чисел заключается в том, что для того, чтобы умножить два отрицательных числа, необходимо перемножить их модули. Данное правило записывается так: для любых отрицательных чисел – a , — b данное равенство считается верным.

Выше приведено правило умножения двух отрицательных чисел. Исходя из него, докажем выражение: ( — а ) · ( — b ) = a · b . Статья умножение чисел с разными знаками рассказывает о том, что равенств а · ( — b ) = — a · b справедливое, как и ( — а ) · b = — a · b . Это следует из свойства противоположных чисел, благодаря которому равенства запишутся следующим образом:

( — a ) · ( — b ) = ( — a · ( — b ) ) = — ( — ( a · b ) ) = a · b .

Тут явно видно доказательство правила умножения отрицательных чисел. Исходя из примеров явно, что произведение двух отрицательных чисел – положительное число. При перемножении модулей чисел результат всегда положительное число.

Данное правило применимо для умножения действительных чисел, рациональных чисел, целых чисел.

Примеры умножения отрицательных чисел

Теперь рассмотрим подробно примеры умножения двух отрицательных чисел. При вычислении необходимо пользоваться правилом, написанным выше.

Читайте также:  Установить вацап на нокиа люмия

Произвести умножение чисел — 3 и — 5 .

Решение.

По модулю умножаемые данные два числа равны положительным числам 3 и 5 . Их произведение дает в результате 15 . Отсюда следует, что произведение заданных чисел равно 15

Запишем кратко само умножение отрицательных чисел:

( — 3 ) · ( — 5 ) = 3 · 5 = 15

Ответ: ( — 3 ) · ( — 5 ) = 15 .

При умножении отрицательных рациональных чисел, применив разобранное правило, можно мобилизоваться к умножению дробей, умножению смешанных чисел, умножению десятичных дробей.

Вычислить произведение ( — 0 , 125 ) · ( — 6 ) .

Используя правило умножения отрицательных чисел, получим, что ( − 0 , 125 ) · ( − 6 ) = 0 , 125 · 6 . Для получения результата необходимо выполнить умножение десятичной дроби на натуральное число столбиков. Это выглядит так:

Получили, что выражение примет вид ( − 0 , 125 ) · ( − 6 ) = 0 , 125 · 6 = 0 , 75 .

Ответ: ( − 0 , 125 ) · ( − 6 ) = 0 , 75 .

В случае, когда множители – иррациональные числа, тогда их произведение может быть записано в виде числового выражения. Значение вычисляется только по необходимости.

Необходимо произвести умножение отрицательного — 2 на неотрицательное log 5 1 3 .

Находим модули заданных чисел:

— 2 = 2 и log 5 1 3 = — log 5 3 = log 5 3 .

Следуя из правил умножения отрицательных чисел, получим результат — 2 · log 5 1 3 = — 2 · log 5 3 = 2 · log 5 3 . Это выражение и является ответом.

Ответ: — 2 · log 5 1 3 = — 2 · log 5 3 = 2 · log 5 3 .

Для продолжения изучения темы необходимо повторить раздел умножение действительных чисел.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector