No Image

Чем отличается прямоугольник от четырехугольника

СОДЕРЖАНИЕ
9 просмотров
10 марта 2020

Тема: Виды четырехугольников. Прямоугольник

Цели:

  1. Обеспечить усвоение учащимися знаний о различных видах четырехугольников, прямоугольника.
  2. Развить умения классифицировать факты, делать выводы, строить прямоугольник и отличать его из ряда четырехугольников.
  3. Воспитание мотивов учения, положительного отношения к занятиям.

Тип урока – комбинированный.

Вид урока – дидактическая игра.

Методы и приемы обучения: диалогический и эвристический методы:

  • организация труда в парах;
  • фронтальная работа;
  • оперативная форма проверки знаний (спецкарточки);
  • демонстрация наглядных пособий;
  • работа в бригадах.
  • кодоскоп;
  • плакат с видами четырехугольников;
  • наглядные пособия к сказке;
  • сигнальные карточки;
  • перфокарты для каждого ученика с заготовленными таблицами;
  • заготовки прямоугольников;
  • ножницы, линейки, карандаши, чертежные треугольники;
  • магнитная доска;
  • прямоугольники с номерками;
  • раздаточный материал (прямоугольники красного цвета для поощрения отвечающих);
  • магнитофон.

Ход урока

Сегодня на уроке мы с вами совершим путешествие в удивительную страну Геометрию:

– Кто знает, что в переводе с греческого обозначает слово “геометрия”?

“Гео” – земля, “метрия” – измерение.

Наука эта появилась в Греции.

Сопровождать нас будет в нашем путешествии (учитель показывает сказочного героя) удивительный герой – волшебник.

– Всех вас он зашифровал, и вы будете путешествовать под зашифрованными номерами.

– Кто узнал его? (Старик Хоттабыч.)

– Кто написал книжку “Старик Хоттабыч”? (Лагин.)

Старик Хоттабыч очень старый волшебник и его знания устарели, поэтому он пришел к вам на урок и хочет узнать, что же сейчас изучают современные дети. Помогите волшебнику разобраться.

– Что изображено на доске? (Геометрические фигуры.)

– Определите на какие 2 группы вы могли бы разделить эти геометрические фигуры? (Треугольники и четырехугольники.)

Заполните карточку №1. Укажите номера треугольников и четырехугольников. Все дети указывают в карточке номера.

Каточка №1

2 4 6 8

1 3 5 7 9 10

В это время 2 ученика фиксируют ответы на доске.

– Укажите во второй карточке номера треугольников по углам (тупоугольный, прямоугольный, остроугольный) и по сторонам (равносторонний и равнобедренный).

Работу выполняют по вариантам, а потом обмениваются карточками и осуществляют взаимопроверку в парах.

Вариант №1: Карточка №2

Углы треугольника

ников

Тупоугольный

Остроугольный

5 7

1 10

Вариант №1: Карточка №2

Стороны треугольника

ников

Равносторонний

Равнобедренный

10

1) Сегодня мы с нашим героем познакомимся с видами четырёхугольников, а именно; с прямоугольником, научимся его чертить и выделять среди других фигур Т.к. треугольников и четырёхугольников в геометрии много. Вот как выглядят некоторые из них:

– Какие из них вы уже знаете?

Дети называют те виды, которые знают.

– Что общего у этих фигур, что их объединяет в одну группу?

(4 стороны, 4 угла, 4 вершины.)

– А чем один вид отличается от другого? (Длинами сторон и особенностями углов.)

Учитель обращает внимание детей на таблицу и говорит определения.

  1. Квадрат
  2. – прямоугольник, у которого все стороны равны.

  3. Трапеция
  4. – четырехугольник, у которого только 2 противоположные стороны параллельны (перевод “столик”).

  5. Параллелограмм
  6. – четырехугольник, у которого противоположные стороны параллельны и равны.

  7. Ромб
  8. – параллелограмм, у которого все стороны равны.

  9. Неправильный четырехугольник
  10. – фигура, у которой стороны не равны и не параллельны.

2) Помогите Хоттабычу из ряда четырехугольников найти похожие (1 3 5).

– Как называются углы у фигур 1, 3, 5? (Прямые.)

– А как бы вы назвали эти фигуры? (Прямоугольники.)

– Попробуйте сказать, что же такое прямоугольник?

Прямоугольник – геометрическая фигура, у которой все углы прямые и противоположные стороны равны.

– Назовите вершины у прямоугольника АВСД? (А, В, С, Д – вершины.)

В школьной программе на уроках геометрии приходится иметь дело с разнообразными видами четырёхугольников: ромбами, параллелограммами, прямоугольниками, трапециями, квадратами. Самыми первыми фигурами для изучения становятся прямоугольник и квадрат.

Итак, что же такое прямоугольник? Определение для 2 класса общеобразовательной школы будет выглядеть так: это четырёхугольник, у которого все четыре угла прямые. Несложно представить себе, как выглядит прямоугольник: это фигура с 4 прямыми углами и сторонами, попарно параллельными друг другу.

Признаки и свойства прямоугольника

Как понять, решая очередную геометрическую задачу, с каким именно четырёхугольником мы имеем дело? Существуют три основных признака, по которым можно безошибочно определить, что речь идёт именно о прямоугольнике. Назовём их:

  • фигура является четырёхугольником, три угла которого равны 90°;
  • представленный четырёхугольник — это параллелограмм с равными диагоналями;
  • параллелограмм, который имеет по крайней мере один прямой угол.

Интересно знать: что такое выпуклый четырехугольник, его особенности и признаки.

Поскольку прямоугольник — это параллелограмм (т. е. четырёхугольник с попарно параллельными противоположными сторонами), то для него будут выполняться все его свойства и признаки.

Формулы для вычисления длины сторон

В прямоугольнике противолежащие стороны равны и взаимно параллельны. Более длинную сторону принято называть длиной (обозначается a), более короткую — шириной (обозначается b). В прямоугольнике на изображении длинами являются стороны AB и CD, а шириной — AC и B. D. Также они перпендикулярны к основаниям (т. е. являются высотами).

Это интересно: в геометрии луч — это что такое, основное понятие.

Для нахождения сторон можно воспользоваться формулами, указанными ниже. В них приняты условные обозначения: a — длина прямоугольника, b — его ширина, d — диагональ (отрезок, соединяющий вершины двух углов, лежащих друг напротив друга), S — площадь фигуры, P — периметр, α — угол между диагональю и длиной, β — острый угол, который образован обеими диагоналями. Способы нахождения длин сторон:

  • С использованием диагонали и известной стороны: a = √(d ² — b ²), b = √(d ² — a ²).
  • По площади фигуры и одной из её сторон: a = S / b, b = S / a.
  • При помощи периметра и известной стороны: a = (P — 2 b) / 2, b = (P — 2 a) / 2.
  • Через диагональ и угол между ней и длиной: a = d sinα, b = d cosα.
  • Через диагональ и угол β: a = d sin 0,5 β, b = d cos 0,5 β.

Периметр и площадь

Периметром четырёхугольника называют сумму длин всех его сторон. Чтобы вычислить периметр, могут использоваться следующие формулы:

  • Через обе стороны: P = 2 (a + b).
  • Через площадь и одну из сторон: P = (2S + 2a ²) / a, P = (2S + 2b ²) / b.

Площадь — это пространство, ограниченное периметром. Три основных способа для расчёта площади:

  • Через длины обеих сторон: S = a*b.
  • При помощи периметра и какой-либо одной известной стороны: S = (Pa — 2 a ²) / 2; S = (Pb — 2 b ²) / 2.
  • По диагонали и углу β: S = 0,5 d ² sinβ.

Диагонали прямоугольника

В задачах школьного курса математики часто требуется хорошо владеть свойствами диагоналей прямоугольника. Перечислим основные из них:

  1. Диагонали равны друг другу и делятся на два равных отрезка в точке их пересечения.
  2. Диагональ определяется как корень суммы обеих сторон, возведённых в квадрат (следует из теоремы Пифагора).
  3. Диагональ разделяет прямоугольник на два треугольника с прямым углом.
  4. Точка пересечения совпадает с центром описанной окружности, а сами диагонали — с её диаметром.

Применяются следующие формулы для расчёта длины диагонали:

  • С использованием длины и ширины фигуры: d = √(a ² + b ²).
  • С использованием радиуса окружности, описанной вокруг четырёхугольника: d = 2 R.

Определение и свойства квадрата

Квадрат — это частный случай ромба, параллелограмма или прямоугольника. Его отличие от этих фигур заключается в том, что все его углы прямые, и все четыре стороны равны. Квадрат — это правильный четырёхугольник.

Четырёхугольник называют квадратом в следующих случаях:

  1. Если это прямоугольник, у которого длина a и ширина b равны.
  2. Если это ромб с равными длинами диагоналей и с четырьмя прямыми углами.

К свойствам квадрата относятся все ранее рассмотренные свойства, относящиеся к прямоугольнику, а также следующие:

  1. Диагонали перпендикулярны относительно друг друга (свойство ромба).
  2. Точка пересечения совпадает с центром вписанной окружности.
  3. Обе диагонали делят четырёхугольник на четыре одинаковых прямоугольных и равнобедренных треугольника.

Приведём часто используемые формулы для вычисления периметра, площади и элементов квадрата:

  • Диагональ d = a √2.
  • Периметр P = 4 a.
  • Площадь S = a ².
  • Радиус описанной окружности вдвое меньше диагонали: R = 0,5 a √2.
  • Радиус вписанной окружности определяется как половинная длина стороны: r = a / 2.

Примеры вопросов и задач

Разберём некоторые вопросы, с которыми можно столкнуться при изучении курса математики в школе, и решим несколько простых задач.

Задача 1. Как изменится площадь прямоугольника, если увеличить длину его сторон в три раза?

Решение: Обозначим площадь исходной фигуры S0, а площадь четырёхугольника с утроенной длиной сторон — S1. По формуле, рассмотренной ранее, получаем: S0 = ab. Теперь увеличим длину и ширину в 3 раза и запишем: S1= 3 a • 3 b = 9 ab. Сравнивая S0 и S1, становится очевидно, что вторая площадь больше первой в 9 раз.

Вопрос 1. Четырёхугольник с прямыми углами — это квадрат?

Решение: Из определения следует, что фигура с прямыми углами является квадратом лишь тогда, когда длины всех его сторон равны. В остальных случаях фигура является прямоугольником.

Задача 2. Диагонали прямоугольника образуют угол 60 градусов. Ширина прямоугольника — 8. Рассчитать, чему равна диагональ.

Решение: Вспомним, что диагонали точкой пересечения разделяются пополам. Таким образом, имеем дело с равнобедренным треугольником с углом при вершине, равным 60°. Так как треугольник равнобедренный, то находящиеся при основании углы тоже будут одинаковы. Путём несложных вычислений получаем, что каждый из них равен 60°. Отсюда следует, что треугольник равносторонний. Ширина, известная нам, является основанием треугольника, следовательно, половина диагонали тоже равна 8, а длина целой диагонали в два раза больше и равна 16.

Вопрос 2. У прямоугольника все стороны равны или нет?

Решение: Достаточно вспомнить, что все стороны должны быть равны у квадрата, который является частным случаем прямоугольника. Во всех остальных случаях достаточное условие — это наличие минимум 3 прямых углов. Равенство сторон не является обязательным признаком.

Задача 3. Площадь квадрата известна и равна 289. Найти радиусы вписанной и описанной окружности.

Решение: По формулам для квадрата проведём следующие расчёты:

  • Определим, чему равны основные элементы квадрата: a = √ S = √289 = 17; d = a √2 =1 7√2.
  • Подсчитаем, чему равен радиус описанной вокруг четырёхугольника окружности: R = 0,5 d = 8,5√2.
  • Найдём радиус вписанной окружности: r = a / 2 = 17 / 2 = 8,5.

Четырехугольником называют многоугольник, у которого четыре вершины и четыре стороны.

Иначе можно сказать, что четырёхугольником является геометрическая фигура в виде многоугольника, который имеет только четыре угла. Любой предмет или устройство, имеющее такую форму также можно назвать четырехугольником. Две стороны четырехугольника, которые по отношению друг к другу являются несмежными, называются противоположными. Два угла и две вершины, которые не являются соседними, называют противоположными.

Четырехугольник определяют, как параллелограмм, если у него противолежащие стороны попарно параллельны.

Определение

Квадрат — это параллелограмм, у которого все четыре стороны равны и все четыре угла прямые.

Прямоугольник — это параллелограмм, у которого противолежащие стороны, которые параллельны друг другу, равны и все углы прямые.

Сравнение

Квадратом называют параллелограмм, у которого все четыре внутренних угла прямые. Все четыре стороны квадрата равны, то есть имеют одинаковую длину.

Прямоугольником называют параллелограмм, внутренние углы у которого прямые, и только противоположные стороны, которые параллельны друг другу, равны.

Для прямоугольника и квадрата характерны следующие свойства:

  • все углы прямые;
  • диагонали равны;
  • в точке пересечения диагонали делятся пополам;
  • противолежащие стороны параллельны друг другу и равны по длине.
Читайте также:  Lg oled или samsung qled
Комментировать
9 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector